分析 切線的斜率即為函數(shù)在切點(diǎn)處的導(dǎo)數(shù),讓f′(x0)=$\frac{{x}_{0}-a}{{{x}_{0}}^{2}}$≤$\frac{1}{2}$恒成立即可,再由不等式恒成立時(shí)所取的條件得到實(shí)數(shù)a范圍.
解答 解:由f(x)=lnx+$\frac{a}{x}$,(a>0),得到f′(x)=$\frac{x-a}{{x}^{2}}$
∴f′(x0)=$\frac{{x}_{0}-a}{{{x}_{0}}^{2}}$,且以y=f(x)(x∈(0,3])圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤$\frac{1}{2}$恒成立
則f′(x0)=$\frac{{x}_{0}-a}{{{x}_{0}}^{2}}$≤$\frac{1}{2}$在(0,3]上恒成立,即a≥x0-$\frac{1}{2}$x02在(0,3]上恒成立,
令g(x)=x0-$\frac{1}{2}$x02(0<x≤3),可知g(x)max=g(1)=$\frac{1}{2}$,
∴a≥$\frac{1}{2}$,
故答案為:a≥$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的幾何意義,函數(shù)在圖象上某點(diǎn)處的切線的斜率就是在該點(diǎn)處的導(dǎo)數(shù)值,考查了利用分離變量法求參數(shù)的取值范圍,此題是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{e}$) | B. | (0,$\frac{1}{4}$) | C. | [$\frac{1}{4}$,$\frac{1}{e}$) | D. | [$\frac{1}{4}$,e) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{a}<\frac{a+bc}{b+ac}<a$ | B. | $\frac{1}{a}<\frac{a+bc}{b+ac}<b$ | C. | $\frac{1}{c}<\frac{a+bc}{b+ac}<c$ | D. | $\frac{1}{{\sqrt{ab}}}<\frac{a+bc}{b+ac}<\sqrt{ab}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | -8 | C. | ±8 | D. | $\frac{9}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com