18.設(shè)函數(shù)f(x)=ax2+(b-8)x-a-ab,已知不等式f(x)<0的解集是(-∞,-3)∪(2,+∞),
(1)求a和b的值;
(2)已知命題p:?x∈R,ax2+bx+c≤0,命題q:?x∈R,x2+2$\sqrt{3}$x-c=0.如果p∨(¬q)是真命題,p∧(¬q)是假命題,求c的取值范圍.

分析 (1)由題知,-3,2是方程ax2+(b-8)x-a-ab=0的兩根且a<0,由韋達定理可得:a和b的值;
(2)p∨(¬q)是真命題,p∧(¬q)是假命題,則p真q真或p假q假,進而可得c的取值范圍.

解答 解:(1)由題知,-3,2是方程ax2+(b-8)x-a-ab=0的兩根且a<0   …(2分)
故由韋達定理易得a=-3,b=5                              …(4分)
(2)命題p真時,△1≤0,25+12c≤0,c≤-$\frac{25}{12}$
命題q真時,△2≥0,12+4c≥0,∴c≥-3,…(6分)
∵p∨(?q)是真命題,p∧(?q)是假命題,
∴則p真q真或p假q假                           …(8分)
故c的取值范圍是[-3,-$\frac{25}{12}$]…(10分)

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,二次方程與二次不等式的關(guān)系,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i是虛數(shù)單位,若復(fù)數(shù)z=(2-i)(2+ai)在復(fù)平面內(nèi)對應(yīng)的點在第四象限內(nèi),則實數(shù)a的值可以是( 。
A.-2B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{3}+3{x}^{2},0≤x<k}\\{lo{g}_{2}x+1,k≤x≤a}\end{array}\right.$,若存在k使得函數(shù)f(x)的值域為[0,2],則實數(shù)a的取值范圍是{2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,網(wǎng)格紙上小正方形變長為1,粗實線及粗虛線畫出的是某多面體的三視圖,則該多面體體積為(  )
A.$\frac{8}{3}$B.$\frac{16}{3}$C.8D.$\frac{8\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=|x-x${\;}^{\frac{1}{3}}$|的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=lnx+$\frac{a}{x}$,x∈(0,3],其圖象上任意一點P(x0,y0)處的切線的斜率k≤$\frac{1}{2}$恒成立,則實數(shù)a的取值范圍是a≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在數(shù)列{an}中,a1=-1,a2=2,且滿足an+1=an+an+2,則a2016=( 。
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,角A、B、C所對的邊分別是a,b,c,且a,b,c既是等比數(shù)列又是等差數(shù)列,則角B的余弦值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.記函數(shù)f(x)=$\frac{2x}{x-2}$在區(qū)間[3,4]上的最大值和最小值分別為M、m,則$\frac{{m}^{2}}{M}$的值為(  )
A.$\frac{2}{3}$B.$\frac{3}{8}$C.$\frac{3}{2}$D.$\frac{8}{3}$

查看答案和解析>>

同步練習(xí)冊答案