6.將A,B,C,D,E五個字母排成一排,若A與B相鄰,且A與C不相鄰,則不同的排法共有36種.

分析 可利用分步乘法計數(shù)原理,先排D,E,再將AB捆綁,看作一個元素,插入三個空位之一,這時AB、D、E產(chǎn)生四個空位,最后將C插入與A不相鄰的三個空位之一即可.

解答 解:依題意,可分三步,先排D,E,有${A}_{2}^{2}$種方法,產(chǎn)生3個空位,將AB捆綁,看作一個元素,插入三個空位之一,有3種方法,再將AB松綁,有${A}_{2}^{2}$種方法,這時AB、D、E產(chǎn)生四個空位,最后將C插入與A不相鄰的三個空位之一,有3種方法,根據(jù)分步乘法計數(shù)原理得:共有${A}_{2}^{2}$•${A}_{3}^{1}$•${A}_{2}^{2}$•${A}_{3}^{1}$=36種,
故答案為:36.

點評 本題考查排列組合的實際應(yīng)用,突出考查步乘法計數(shù)原理的理解與應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若$0<α<\frac{π}{2},\;0<β<\frac{π}{2}$,且$tanα=\frac{1}{7},\;\;tanβ=\frac{3}{4}$,則α+β的值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow$|=2,|$\overrightarrow{a}$|=2|$\overrightarrow$-$\overrightarrow{a}$|,則|$\overrightarrow{a}$|的取值范圍是[$\frac{4}{3},4$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若數(shù)列{an}滿足2(a1+a2+a3+…+an)=(a1+an)n,則數(shù)列{an}是等差數(shù)列.類比上述結(jié)論,可以猜想:若數(shù)列{bn}滿足(b1b2b3…bn2=(b1bnn,則數(shù)列{bn}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.觀察下列三角形數(shù)表,數(shù)表(1)是楊輝三角數(shù)表,數(shù)表(2)是與數(shù)表(1)有相同構(gòu)成規(guī)律(除每行首末兩端的數(shù)外)的一個數(shù)表

對于數(shù)表(2),設(shè)第n行第二個數(shù)為an(n∈N*)(如a1=2,a2=4,a3=7)
(I )歸納出an與an-1(n≥2,n∈N*)的遞推公式(不用證明),并由歸納的遞推公式,求出{an}的通項公式an
(Ⅱ)數(shù)列{bn}滿足:(an-1)•bn=1,求證:b1+b1+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若實數(shù)x,y滿足x2+y2+8x-6y+16=0,則x+y的最小值是( 。
A.-3$\sqrt{2}$-2B.1C.3$\sqrt{2}$-1D.-3$\sqrt{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若A${\;}_{m}^{5}$=2A${\;}_{m}^{3}$,則m的值為( 。
A.5B.3C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax-1-lnx(a∈R).
(1)當(dāng)a=1時,求曲線在點(1,0)處的切線方程;
(2)求函數(shù)f(x)在區(qū)間$[{\frac{1}{2},2}]$上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知正數(shù)數(shù)列{an}的前n項和為Sn,${a_n}=2\sqrt{S_n}-1$,設(shè)c為實數(shù),對任意的三個成等差數(shù)列的不等的正整數(shù)m,k,n,不等式Sm+Sn>cSk恒成立,則實數(shù)c的取值范圍是(-∞,2].

查看答案和解析>>

同步練習(xí)冊答案