分析 根據(jù)解析式化簡f(ax+b)=x2+10x+24,由兩邊系數(shù)相等列出方程組,求出實(shí)數(shù)a、b的值.
解答 解:∵f(x)=x2+4x+3,f(ax+b)=x2+10x+24,
∴(ax+b)2+4(ax+b)+3=x2+10x+24,
則a2x2+(2ab+4a)x+b2+4b+3=x2+10x+24,
∴$\left\{\begin{array}{l}{{a}^{2}=1}\\{2ab+4a=10}\\{^{2}+4b+3=24}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=1}\\{b=3}\end{array}\right.$或$\left\{\begin{array}{l}{a=-1}\\{b=-7}\end{array}\right.$,
∴實(shí)數(shù)a、b的值是1、3或-1、-7.
點(diǎn)評 本題考查待定系數(shù)法求函數(shù)的解析式,以及方程思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x-1)一定是偶函數(shù) | B. | f(x-1)一定是奇函數(shù) | ||
C. | f(x+1)一定是偶函數(shù) | D. | f(x+1)一定是奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 64π | B. | 16π | C. | 14π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com