分析 (1)(2)化解集合A,確定其元素范圍,根據(jù)集合的并集、交集及其基本運算求解m的范圍即可.
解答 解:(1)由題意得:集合A={x|x2-3x-10≤0}={x|-2≤x≤5},B={x|m-4≤x≤3m+2}.
∵A∪B=B,
∴A⊆B,
∴有$\left\{\begin{array}{l}m-4≤-2\\ 3m+2≥5\end{array}\right.$,
解得:1≤m≤2.
所以A∪B=B時,實數(shù)m的取值范圍是[1,2].
(2)由(1)可知A={x|-2≤x≤5},B={x|m-4≤x≤3m+2}.
∵A∩B=B,
∴B⊆A,
①當B=∅時,滿足題意,此時m-4>3m+2,
解得:m<-3;
②當B≠∅時,要使B⊆A,需滿足:$\left\{\begin{array}{l}m-4≤3m+2\\ m-4≥-2\\ 3m+2≤5\end{array}\right.$,不等式無解;
綜上可得,m<-3.
所以A∩B=B時,實數(shù)m的取值范圍是(-∞,-3).
點評 本題考查了并集,交集及其運算,考查了一元二次不等式的解法,是基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,-1) | B. | (0,1) | C. | (-1,0) | D. | (1,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 9 | B. | 4 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | $\frac{11}{2}$ | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $y={log_a}{x^2}$與y=2logax | B. | y=2x與$y={log_a}{a^{2x}}$ | ||
C. | $y=\sqrt{{x^2}-4}$與$y=\sqrt{x+2}•\sqrt{x-2}$ | D. | $y=\sqrt{x^2}$與y=x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源:2017屆山東臨沭一中高三上學期10月月考數(shù)學(文)試卷(解析版) 題型:選擇題
在等差數(shù)列中,已知,則該數(shù)列前項和( )
A.58 B.88 C.143 D.176
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com