14.已知函數(shù)f(x)=x+2,x∈(1,2],則f(x)的值域為(  )
A.(2,4]B.(3,4]C.(3,5]D.(2,5]

分析 根據(jù)一次函數(shù)的性質(zhì)即可求解.

解答 解:函數(shù)f(x)=y=x+2是增函數(shù),
∵x∈(1,2],
∴y∈(3,4].
∴f(x)的值域為(3,4].
故選B.

點評 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知命題p:方程$\frac{x^2}{2m}+\frac{y^2}{1-m}=1$表示焦點在y軸上的橢圓,命題q:雙曲線$\frac{x^2}{5}-\frac{y^2}{m}=1$的離心率e∈(1,2),若p∨q為真,p∧q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=log2x與g(x)=($\frac{1}{2}$)x-1在同一直角坐標系中的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在一次實驗中,測得(x,y)的四組值分別是A(1,2),B(2,3),C(3,4),D(4,5),則x與y之間的回歸直線方程為( 。
A.$\widehat{y}$=x+1B.$\widehat{y}$=x+2C.$\widehat{y}$=2x+1D.$\widehat{y}$=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某工廠在2016年的“減員增效”中對部分人員實行分流,規(guī)定分流人員一年可以到原單位領(lǐng)取工資的100%,從第二年初,以后每年只能在原單位按上一年的$\frac{2}{3}$領(lǐng)取工資,該廠根據(jù)分流人員的技術(shù)特長,計劃創(chuàng)辦新的經(jīng)濟實體,該經(jīng)濟實體預(yù)計第一年屬投資階段,第二年每人可獲得b元收入,從第三年起每人每年的收入可在上一年的基礎(chǔ)上遞增50%,如果某人分流后工資的收入每年a元,分流后進入新經(jīng)濟實體,第n年的收入為an元;
(1)求{an}的通項公式;
(2)當$b≥\frac{3a}{8}$時,是否一定可以保證這個人分流一年后的收入永遠超過分流前的年收入?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若xlog25=1,求5x+5-x=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(6,x),且$\overrightarrow{a}$⊥$\overrightarrow$,則x的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對任意的非零實數(shù)a,b,若$a?b=\left\{\begin{array}{l}\frac{b-1}{a},a<b\\ \frac{a+1},a≥b\end{array}\right.$則lg10000$?{(\frac{1}{2})^{-2}}$=( 。
A.$\frac{1}{4}$B.$\frac{5}{4}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={x|-2<x<0},B={x|y=$\sqrt{x+1}$}
(1)求(∁RA)∩B;
(2)若集合C={x|a<x<2a+1},且C⊆A,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案