4.已知集合A={x|-2<x<0},B={x|y=$\sqrt{x+1}$}
(1)求(∁RA)∩B;
(2)若集合C={x|a<x<2a+1},且C⊆A,求a的取值范圍.

分析 (1)求解集合B,根據(jù)集合的基本運算即可求求(∁RA)∩B.
(2)根據(jù)C⊆A,建立條件關(guān)系即可求實數(shù)a的取值范圍.

解答 解:(1)∵集合A={x|-2<x<0},
∴∁RA={x|-2≥x或x≥0},
集合B={x|y=$\sqrt{x+1}$}={x|x≥-1}
故得(∁RA)∩B={x|-2≥x或x≥0}∩{x|x≥-1}={x|x≥0}.
(2)集合C={x|a<x<2a+1},
∵C⊆A
當(dāng)集合C=∅時,滿足題意,此時2a+1≤a,解得:a≤-1.
當(dāng)集合C≠∅時,要題意成立,需要滿足$\left\{\begin{array}{l}{a≥-2}\\{2a+1≤0}\\{a<2a+1}\end{array}\right.$,
解得:$-1≤a≤-\frac{1}{2}$
綜上可得實數(shù)a的取值范圍是$(-∞,-\frac{1}{2}]$.

點評 本題主要考查集合的基本運算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=x+2,x∈(1,2],則f(x)的值域為(  )
A.(2,4]B.(3,4]C.(3,5]D.(2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.兩人約好12:00--13:00見面,先到的人等后到的人不超過15分鐘,超過15分鐘,先到的人離去,則兩人相遇的概率是(  )
A.$\frac{2}{15}$B.$\frac{7}{16}$C.$\frac{1}{2}$D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,(其中A>0,ω>0,|φ|<$\frac{π}{2}$),則下列關(guān)于函數(shù)f(x)的說法中正確的是②③(寫出所有正確的序號)

①函數(shù)f(x)的對稱中心是(-$\frac{π}{6}$+2kπ,0)(k∈Z)
②函數(shù)f(x)的解析式是f(x)=sin(x+$\frac{π}{6}$)
③函數(shù)f(x)在[0,$\frac{π}{2}$]上的最小值為$\frac{1}{2}$;
④把函數(shù)f(x)圖象上每一點的橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍,縱坐標(biāo)不變,所得函數(shù)的圖象關(guān)于y軸對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lg(x2-mx-m).
(1)若m=1,求函數(shù)f(x)的定義域;
(2)若f(x)在(1,+∞)上是增函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.要計算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2016}$的結(jié)果,下面程序框圖中的判斷框內(nèi)可以填( 。
A.n<2016B.n>2016C.n≤2016D.n≥2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.命題p:三角形是等邊三角形;命題q:三角形是等腰三角形.則p是q( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若α∈(0,$\frac{π}{2}$),若cos(α+$\frac{π}{6}$)=$\frac{4}{5}$,則sin(2α+$\frac{π}{6}$)的值為( 。
A.$\frac{{12\sqrt{3}-7}}{25}$B.$\frac{{7\sqrt{3}-24}}{50}$C.$\frac{{24\sqrt{3}-7}}{50}$D.$\frac{{12\sqrt{3}+7}}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)定義域為R,且f'(x)>1-f(x),f(0)=2,則不等式f(x)>1+e-x的解集為(0,+∞).

查看答案和解析>>

同步練習(xí)冊答案