【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, ,AB=2CD=8.
(1)設M是PC上的一點,證明:平面MBD⊥平面PAD;
(2)當M點位于線段PC什么位置時,PA∥平面MBD?
【答案】(1)見解析;(2)見解析.
【解析】試題分析:
(1)計算得 ,又平面 平面平面 平面 平面;(2)當 點位于線段靠近 點的三等分點處時, 平面 .先證四邊形 是梯形.再證 平面.
試題解析:(1)在△ABD中,
∵AD=4,,AB=8,∴AD2+BD2=AB2.
∴AD⊥BD.
又∵平面PAD⊥平面ABCD,
平面PAD∩平面ABCD=AD,BD平面ABCD,
∴BD⊥平面PAD.又BD平面MBD,
∴平面MBD⊥平面PAD.
(2)當M點位于線段PC靠近C點的三等分點處時,PA∥平面MBD.
證明如下:連接AC,交BD于點N,連接MN.
∵AB∥DC,所以四邊形ABCD是梯形.
∵AB=2CD,∴CN:NA=1:2.
又∵CM:MP=1:2,
∴CN:NA=CM:MP,∴PA∥MN.
∵MN平面MBD,∴PA∥平面MBD.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個水輪的半徑為4m,水輪圓心O距離水面2m,已知水輪每分鐘轉動5圈,如果當水輪上點P從水中浮現(xiàn)時(圖中點p0)開始計算時間.
(1)將點p距離水面的高度z(m)表示為時間t(s)的函數(shù);
(2)點p第一次到達最高點大約需要多少時間?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在區(qū)間上的最大值和最小值;
(2)若在區(qū)間上,函數(shù)的圖像恒在直線下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:x2+y2=9,點A(-5,0),直線l:x-2y=0.
(1)求與圓C相切,且與直線l垂直的直線方程;
(2)在直線OA上(O為坐標原點),存在定點B(不同于點A),滿足:對于圓C上任一點P,都有為一常數(shù),試求所有滿足條件的點B的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三個班共有學生100人,為調查他們的體育鍛煉情況,通過分層抽樣獲取了部分學生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時).
班 | 6 | 7 | ||
班 | 6 | 7 | 8 | |
班 | 5 | 6 | 7 | 8 |
(1)試估計班學生人數(shù);
(2)從班和班抽出來的學生中各選一名,記班選出的學生為甲,班選出的學生為乙,求甲的鍛煉時間大于乙的鍛煉時間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)對于曲線上的不同兩點,如果存在曲線上的點,且使得曲線在點處的切線,則稱為弦的伴隨直線,特別地,當時,又稱為的—伴隨直線.
①求證:曲線的任意一條弦均有伴隨直線,并且伴隨直線是唯一的;
②是否存在曲線,使得曲線的任意一條弦均有—伴隨直線?若存在,給出一條這樣的曲線,并證明你的結論;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一(1)班有男同學45名,女同學15名,老師按照分層抽樣的方法抽取4人組建了一個課外興趣小組.
(I)求課外興趣小組中男、女同學的人數(shù);
(II)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是從小組里選出一名同學做實驗,該同學做完后,再從小組內(nèi)剩下的同學中選出一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率;
(III)在(II)的條件下,第一次做實驗的同學A得到的實驗數(shù)據(jù)為38,40,41,42,44,第二次做實驗的同學B得到的實驗數(shù)據(jù)為39,40,40,42,44,請問哪位同學的實驗更穩(wěn)定?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x+1)-f(x)=-2x+1,且f(2)=15.
(1)求函數(shù)f(x)的解析式;
(2) 令g(x)=(2-2m)x-f(x).
① 若函數(shù)g(x)在x∈[0,2]上是單調函數(shù),求實數(shù)m的取值范圍;
② 求函數(shù)g(x)在x∈[0,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(ax2-x+1)(a>0,a≠1).
(1) 若a=,求函數(shù)f(x)的值域.
(2) 當f(x)在區(qū)間上為增函數(shù)時,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com