已知函數(shù)y=x2-2ax+
3
4
的兩個零點分別在區(qū)間(0,1)和(1,2)內(nèi),求實數(shù)a的取值范圍.
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=x2-2ax+
3
4
,若函數(shù)y=x2-2ax+
3
4
的兩個零點分別在區(qū)間(0,1)和(1,2)內(nèi),則
f(1)<0
f(2)>0
,進而可得實數(shù)a的取值范圍.
解答: 解:令y=f(x)=x2-2ax+
3
4
,
由y=f(x)=x2-2ax+
3
4
的兩個零點分別在區(qū)間(0,1)和(1,2)內(nèi),f(0)=
3
4
可得:
f(1)<0
f(2)>0
,即
7
4
-2a<0
19
4
-4a>0

解得:a∈(
7
8
,
19
16
),
故實數(shù)a的取值范圍為(
7
8
,
19
16
點評:本題考查的知識點是函數(shù)零點的判定定理,將問題轉(zhuǎn)化為
f(1)<0
f(2)>0
,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

各項均不為0的等差數(shù)列{an}中,若an2-an-1-an+1=0(n∈N*,n≥2),Sn為數(shù)列的前n項和,則S2012=( 。
A、0B、2011
C、2012D、4024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了對某課題進行研究,用分層抽樣方法從三所高校A,B,C的相關(guān)人員中,抽取若干人組成研究小組、有關(guān)數(shù)據(jù)見下表(單位:人)
高校相關(guān)人數(shù)抽取人數(shù)
A18x
B362
C54y
(Ⅰ)求x,y;
(Ⅱ)若從高校A、C抽取的人中選2人作專題發(fā)言,求這二人是高校A、C各一人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點M到點A(2,0)的距離是它到點B(8,0)的距離的一半;直線l的方程為y-1=k(x+1).
(1)求M的軌跡方程;
(2)判斷l(xiāng)與M的軌跡的位置關(guān)系,若相交求出最短的弦長;
(3)設(shè)l與M的軌跡相交于A、B兩點,是否存在k使得OA⊥OB?若存在求出k;若不存在,請給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=
sin(π+α)cos(2π-α)tan(2π-α)
tan(-α-π)cos(-
2
-α)

(1)若α=-1860°,求f(α);
(2)若cos(α-
2
)=
3
5
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2-6mx-2(m-1)y+10m2-2m-24=0.m∈R.求證:
(1)不論m取何值,圓心在同一條直線l上;
(2)與l平行的直線被圓所截得的線段長與m無關(guān).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是二次函數(shù),不等式f(x)<0的解集是(0,5),且f(x)在點(1,f(1))處的切線與直線6x+y+1=0平行.求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行六面體ABCD-A1B1C1D1中,底面ABCD是邊長為1的正方形.AA1=2,∠A1AB=∠A1AD=120°.
(1)求線段AC1的長;
(2)求異面直線AC1與A1D所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解學(xué)生喜歡數(shù)學(xué)是否與性別有關(guān),對50個學(xué)生進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜歡數(shù)學(xué)不喜歡數(shù)學(xué)合計
男生
 
5
 
女生10
 
 
合計
 
 
50
已知在全部50人中隨機抽取1人抽到喜歡數(shù)學(xué)的學(xué)生的概率為
3
5

(Ⅰ)請將上面的列聯(lián)表補充完整(不用寫計算過程);
(Ⅱ)是否有99%的把握認為喜歡數(shù)學(xué)與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:(參考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
d0.9000.9500.9900.995
k22.7063.8416.6357.879

查看答案和解析>>

同步練習(xí)冊答案