給定有限單調(diào)遞增數(shù)列{xn}(至少有兩項(xiàng)),其中xi≠0(1≤i≤n),定義集合A={(xi,xj)|1≤i,j≤n,且i,j∈N*}.若對(duì)任意的點(diǎn)A1∈A,存在點(diǎn)A2∈A使得
OA1
OA2
(O為坐標(biāo)原點(diǎn)),則稱數(shù)列{xn}具有性質(zhì)P.例如數(shù)列{xn}:-2,2具有性質(zhì)P.以下對(duì)于數(shù)列{xn}的判斷:
①數(shù)列{xn}:-2,-1,1,3具有性質(zhì)P;
②若數(shù)列{xn}滿足xn=
-1,n=1
2n-1,2≤n≤2014
,則該數(shù)列具有性質(zhì)P;
③若數(shù)列{xn}具有性質(zhì)P,則數(shù)列{xn}中一定存在兩項(xiàng)xi,xj,使得xi+xj=0;
其中正確的是( 。
A、①②③B、②③C、①②D、③
考點(diǎn):數(shù)列的應(yīng)用
專題:新定義,等差數(shù)列與等比數(shù)列
分析:對(duì)于①,取A1(-2,3),若存在A2(x,y)滿足
OA1
OA2
,可得
y
x
=
2
3
,數(shù)列{xn}中不存在這樣的項(xiàng)x,y;
對(duì)于②,取A1(-1,-1)時(shí),不存在A2(x,y),使得
OA1
OA2
;
對(duì)于③,取A1(xk,xk),利用條件可得xi+xj=0.
解答: 解:對(duì)于①,取A1(-2,3)時(shí),若存在A2(x,y)滿足
OA1
OA2
,得-2x+3y=0,即
y
x
=
2
3
,數(shù)列{xn}中不存在這樣的項(xiàng)x,y,因此不具有性質(zhì)P.
對(duì)于②,取A1(-1,-1)時(shí),不存在A2(x,y),使得
OA1
OA2
,得-x-y=0,數(shù)列{xn}中不存在這樣的項(xiàng)x,y,故②不具有性質(zhì)P.
對(duì)于③,取A1(xk,xk),若數(shù)列{xn}具有性質(zhì)P,則存在點(diǎn)A2(xi,xj)使得
OA1
OA2
,即xkxi+xkxj=0,又xk≠0,所以xi+xj=0,故③正確.
故選D.
點(diǎn)評(píng):本題考查新定義,考查數(shù)列的應(yīng)用,正確理解新定義是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
lg(-3x2+6x+7)
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A、
4
3
5
B、
8
3
C、4
5
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
BA
=
a
BC
=
b
,
AC
=
c
且滿足λ(
a
|
a
|
+
b
|
b
|
)•
c
=0(λ>0),則△ABC為(  )
A、等腰三角形B、等邊三角形
C、直角三角形D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,函數(shù)y=
x
3
+
3
x
的圖象是雙曲線,下列關(guān)于該雙曲線的性質(zhì)的描述中正確的個(gè)數(shù)是( 。
①漸近線方程是y=
3
3
x
和x=0;
②對(duì)稱軸所在的直線方程為y=
3
x
y=-
3
3
x
;
③實(shí)軸長(zhǎng)和虛軸長(zhǎng)之比為3:
3
;
④其共軛雙曲線的方程為y=
x
3
-
3
x
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓上的三個(gè)不同點(diǎn)A(x1,y1)、B(4,
9
5
)、C(x2,y2) 與焦點(diǎn)F(4,0)的距離成等差數(shù)列,求證:x1+x2=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為邊長(zhǎng)為2的菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中點(diǎn),PA=AB.
(Ⅰ)證明:AE⊥PD;
(Ⅱ)若F為PD上的動(dòng)點(diǎn),求EF與平面PAD所成最大角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x,n)=(1+x)n,(n∈N*).
(1)求f(x,6)的展開式中系數(shù)最大的項(xiàng);
(2)若f(i,n)=32i(i為虛數(shù)單位),求C
 
1
n
-C
 
3
n
+C
 
5
n
-C
 
7
n
+C
 
9
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C對(duì)應(yīng)的邊,若a=5,b=3,∠C=120°,求c、cosA、sinB的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案