11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${a_1}=1,{S_n}=\frac{{({n+1}){a_n}}}{2}$,則a2017=(  )
A.2016B.2017C.4032D.4034

分析 ${a_1}=1,{S_n}=\frac{{({n+1}){a_n}}}{2}$,n≥2時(shí),an=Sn-Sn-1,化為:$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$,即可得出.

解答 解:∵${a_1}=1,{S_n}=\frac{{({n+1}){a_n}}}{2}$,
∴n≥2時(shí),an=Sn-Sn-1=$\frac{(n+1){a}_{n}}{2}$-$\frac{n{a}_{n-1}}{2}$,化為:$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$,
∴$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$=…=$\frac{{a}_{1}}{1}$=1,
∴an=n.
則a2017=2017.
故選:B.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、數(shù)列通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知f(x)=x2+3xf'(2),則f(2)=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知正四棱柱(底面是正方形,側(cè)棱垂直于底面)的高為4,體積為16,八個(gè)頂點(diǎn)都在一個(gè)球面上,則這個(gè)球的表面積是24π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.為了測(cè)算如圖陰影部分的面積,作一個(gè)邊長(zhǎng)為3的正方形將其包含在內(nèi),并向正方形內(nèi)隨機(jī)投擲600個(gè)點(diǎn),已知恰有200個(gè)點(diǎn)落在陰影部分內(nèi),據(jù)此,可估計(jì)陰影部分的面積是(  )
A.12B.9C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知$\vec a=(2cosx,\sqrt{3}cosx)$,$\vec b=(cosx,2sinx)$,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$(x∈R)
(1)求函數(shù)f(x)的周期;
(2)若方程f(x)-t=1在$x∈[0,\frac{π}{2}]$內(nèi)恒有兩個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列判斷中,正確的有( 。
①一個(gè)命題的逆命題為真,它的否命題也一定為真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件;
③$\left\{{\begin{array}{l}{x>1}\\{y>2}\end{array}}\right.$是$\left\{{\begin{array}{l}{x+y>3}\\{xy>2}\end{array}}\right.$的充要條件;
④“am2<bm2”是“a<b”的必要不充分條件.
A.①②B.①③C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,圓C內(nèi)切于扇形AOB,$∠AOB=\frac{π}{3}$,若在扇形AOB內(nèi)任取一點(diǎn),則該點(diǎn)在圓C內(nèi)的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+Sn=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右頂點(diǎn)為E,過(guò)雙曲線的左焦點(diǎn)且垂直于x軸的直線與該雙曲線相交于A、B兩點(diǎn),若∠AEB=90°,則該雙曲線的離心率e是( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.2C.$\frac{{\sqrt{5}+1}}{2}$或2D.不存在

查看答案和解析>>

同步練習(xí)冊(cè)答案