【題目】某商場(chǎng)推出消費(fèi)抽現(xiàn)金活動(dòng),顧客消費(fèi)滿1000元可以參與一次抽獎(jiǎng),該活動(dòng)設(shè)置了一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)以及參與獎(jiǎng),獎(jiǎng)金分別為:一等獎(jiǎng)200元、二等獎(jiǎng)100元、三等獎(jiǎng)50元、參與獎(jiǎng)20元,具體獲獎(jiǎng)人數(shù)比例分配如圖,則下列說法中錯(cuò)誤的是(

A.獲得參與獎(jiǎng)的人數(shù)最多

B.各個(gè)獎(jiǎng)項(xiàng)中一等獎(jiǎng)的總金額最高

C.二等獎(jiǎng)獲獎(jiǎng)人數(shù)是一等獎(jiǎng)獲獎(jiǎng)人數(shù)的兩倍

D.獎(jiǎng)金平均數(shù)為

【答案】B

【解析】

由于各獲獎(jiǎng)人數(shù)所占總獲獎(jiǎng)人數(shù)的百分比的比例關(guān)系與各獲獎(jiǎng)人數(shù)的比例關(guān)系一致,即可判斷A,C;設(shè)獲獎(jiǎng)人數(shù)為,分別求得各獎(jiǎng)項(xiàng)的總金額,即可判斷B;利用平均數(shù)的公式求解平均數(shù),即可判斷D.

由圖可知,獲得參與獎(jiǎng)的人數(shù)占獲獎(jiǎng)人數(shù)的55%,是最多的,A正確;

假設(shè)獲獎(jiǎng)人數(shù)為,則一等獎(jiǎng)總金額為,二等獎(jiǎng)總金額為,

三等獎(jiǎng)總金額為,參與獎(jiǎng)總金額為,

所以三等獎(jiǎng)總金額是最高的,B錯(cuò)誤;

二等獎(jiǎng)獲獎(jiǎng)人數(shù)占獲獎(jiǎng)人數(shù)的10%,一等獎(jiǎng)獲獎(jiǎng)人數(shù)占獲獎(jiǎng)人數(shù)的5%,

即二等獎(jiǎng)獲獎(jiǎng)人數(shù)是一等獎(jiǎng)獲獎(jiǎng)人數(shù)的兩倍,C正確;

由圖,可得獎(jiǎng)金平均數(shù)為,D正確;

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,拋物線上的點(diǎn)到準(zhǔn)線的最小距離為.

1)求拋物線的方程;

2)若過點(diǎn)作互相垂直的兩條直線、,與拋物線交于兩點(diǎn),與拋物線交于兩點(diǎn),分別為弦的中點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的極值點(diǎn)的個(gè)數(shù);

2)若3個(gè)極值點(diǎn),,(其中),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)x[1,e]時(shí),fx)的最小值為_____;設(shè)gx)=[fx]2fx+a若函數(shù)gx)有6個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】區(qū)塊鏈技術(shù)被認(rèn)為是繼蒸汽機(jī)、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機(jī)器,將可能徹底改變整個(gè)人類社會(huì)價(jià)值傳遞的方式,2015年至2019年五年期間,中國(guó)的區(qū)塊鏈企業(yè)數(shù)量逐年增長(zhǎng),居世界前列現(xiàn)收集我國(guó)近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表

年份

2015

2016

2017

2018

2019

編號(hào)

1

2

3

4

5

企業(yè)總數(shù)量y(單位:千個(gè))

2.156

3.727

8.305

24.279

36.224

注:參考數(shù)據(jù)(其中zlny).

附:樣本(xi,yi)(i1,2,,n)的最小二乘法估計(jì)公式為

1)根據(jù)表中數(shù)據(jù)判斷,ya+bxycedx(其中e2.71828…,為自然對(duì)數(shù)的底數(shù)),哪一個(gè)回歸方程類型適宜預(yù)測(cè)未來幾年我國(guó)區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說明理由)

2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點(diǎn)后第三位);

3)為了促進(jìn)公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進(jìn)行一次信息化技術(shù)比賽,邀請(qǐng)甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場(chǎng)比賽有兩個(gè)公司參加,并決出勝負(fù);②每場(chǎng)比賽獲勝的公司與未參加此場(chǎng)比賽的公司進(jìn)行下一場(chǎng)的比賽;③在比賽中,若有一個(gè)公司首先獲勝兩場(chǎng),則本次比賽結(jié)束,該公司就獲得此次信息化比賽的優(yōu)勝公司,已知在每場(chǎng)比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請(qǐng)通過計(jì)算說明,哪兩個(gè)公司進(jìn)行首場(chǎng)比賽時(shí),甲公司獲得優(yōu)勝公司的概率最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線,曲線為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系.

1)求的極坐標(biāo)方程;

2)射線的極坐標(biāo)方程為,若分別與交于異于極點(diǎn)的兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);

2)若對(duì),恒成立,求實(shí)數(shù)的取值范圍;

3)證明:若,不等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),

1)設(shè)是函數(shù)的導(dǎo)函數(shù),求的單調(diào)區(qū)間;

2)證明:當(dāng)時(shí),在區(qū)間上有極大值點(diǎn),且

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,有下列4個(gè)命題:

,則的圖象關(guān)于直線對(duì)稱;

的圖象關(guān)于直線對(duì)稱;

為偶函數(shù),且,則的圖象關(guān)于直線對(duì)稱;

為奇函數(shù),且,則的圖象關(guān)于直線對(duì)稱.

其中正確的命題為 .(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案