1.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(3,1),$\overrightarrow{c}$=(k,4),且($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{c}$,則$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow$)=( 。
A.(2,12)B.(-2,12)C.14D.10

分析 由已知求出$\overrightarrow{a}-\overrightarrow$,$\overrightarrow{a}+\overrightarrow$的坐標,再由($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{c}$列式求得k值,得到$\overrightarrow{c}$,然后利用數(shù)量積的坐標運算求得$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow$).

解答 解:∵$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(3,1),$\overrightarrow{c}$=(k,4),
∴$\overrightarrow{a}-\overrightarrow$=(-4,1),$\overrightarrow{a}+\overrightarrow$=(2,3),
∵($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{c}$,∴-4k+4=0,解得k=1.
∴$\overrightarrow{c}=(1,4)$,則$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow$)=(1,4)•(2,3)=1×2+4×3=14.
故選:C.

點評 本題考查平面向量的數(shù)量積運算,考查向量共線與垂直的坐標表示,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某企業(yè)用180萬元購買一套新設(shè)備,該套設(shè)備預(yù)計平均每年能給企業(yè)帶來100萬元的收入,維護設(shè)備的正常運行第一年各種費用約為10萬元,且從第二年開始每年比上一年所需費用要增加10萬元.
(1)求該設(shè)備給企業(yè)帶來的總利潤y(萬元)與使用年數(shù)x(x∈N*)的函數(shù)關(guān)系;
(2)這套設(shè)備使用多少年,可使年平均利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.閱讀如圖的程序框圖,如果輸出的函數(shù)值在區(qū)間[$\frac{1}{4}$,$\frac{1}{2}$]內(nèi),則輸入的實數(shù)x的取值范圍是( 。
A.[-2,-1]B.(-∞,-2]∪[-1,+∞)C.[-2,2]D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x2e-ax-1(a是常數(shù)),
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間:(2)當x∈(0,16)時,函數(shù)f(x)有零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,已知一個八面體各棱長均為1,四邊形ABCD為正方形,則下列命題中不正確的是(  )
A.不平行的兩條棱所在直線所成的角為60°或90°
B.四邊形AECF為正方形
C.點A到平面BCE的距離為$\frac{{\sqrt{6}}}{4}$
D.該八面體的頂點在同一個球面上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=lnx+x2-bx.
(1)若函數(shù)f(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
 (2)當b=-1時,設(shè)g(x)=f(x)-2x2,求函數(shù)g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求符合下列條件的直線方程:
(1)過點P(3,-2),且與直線4x+y-2=0平行;
(2)過點P(3,-2),且與直線4x+y-2=0垂直;
(3)過點P(3,-2),且在兩坐標軸上的截距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知a,b∈R+,且a≠b,設(shè)f(n)=an-bn,且f(3)=f(2),求證:1<a+b<$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)在R上是奇函數(shù),且滿足f(x+4)=f(x),當x∈(-2,0)時,f(x)=2x2,則f(2017)等于( 。
A.-2B.2C.-98D.98

查看答案和解析>>

同步練習冊答案