1.在邊長為4的正方形ABCD內(nèi)部任取一點M,則滿足∠AMB為銳角的概率為(  )
A.$1-\frac{π}{8}$B.$\frac{π}{8}$C.$1-\frac{π}{4}$D.$\frac{π}{4}$

分析 根據(jù)幾何概型的概率公式進行求解即可得到結(jié)論.

解答 解:如果∠AEB為直角,動點E位于以AB為直徑的圓上(如圖所示).
要使∠AMB為銳角,則點M位于正方形內(nèi)且半圓外(如圖所示的陰影部分);
因為半圓的面積為$\frac{1}{2}×π×{2}^{2}=2π$,正方形的面積為4×4=16,
所以滿足∠AMB為銳角的概率P=1-$\frac{2π}{16}$=1-$\frac{π}{8}$.
故選A.

點評 本題主要考查幾何概型的概率公式的應用,根據(jù)幾何概型的概率公式是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知拋物線x=4y2上一點P(m,1),焦點為F.則|PF|=( 。
A.m+1B.2C.$\frac{63}{16}$D.$\frac{65}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.雙曲線C的中心在原點,右焦點為F($\frac{2\sqrt{3}}{3}$,0),一條漸近線方程為y=$\sqrt{3}$x,
(1)求雙曲線C方程
(2)設(shè)直線L:y=kx+1與雙曲線交于A,B兩點,問:當k為何值時,以AB為直徑的圓過原點?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.當用反證法證明“已知x>y,證明:x3>y3”時,假設(shè)的內(nèi)容應是( 。
A.x3≤y3B.x3<y3C.x3>y3D.x3≥y3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在平面直角坐標系xOy中,已知點P為函數(shù)y=2lnx的圖象與圓M:(x-3)2+y2=r2的公共點,且它們在點P處有公切線,若二次函數(shù)y=f(x)的圖象經(jīng)過點O,P,M,則y=f(x)的最大值為$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=xlnx-k(x-1)
(1)求f(x)的單調(diào)區(qū)間;并證明lnx+$\frac{e}{x}$≥2(e為自然對數(shù)的底數(shù))恒成立;
(2)若函數(shù)f(x)的一個零點為x1(x1>1),f'(x)的一個零點為x0,是否存在實數(shù)k,使$\frac{x_1}{x_0}$=k,若存在,求出所有滿足條件的k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知p:x(x-2)≥0,q:|x-2|<1,其中x是實數(shù).
(1)若命題“¬p”為真,求x的取值范圍;
(2)若命題p,命題q都為真,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知以下列聯(lián)表,且已知P(K2≥6.635)≈0.010,根據(jù)此列聯(lián)表求得隨機變量K2的觀測值k≈16.373>6.635,那么以下說法正確的是( 。
患心臟病患其它病總計
禿頂214175389
不禿頂4515971048
總計6657721437
A.禿頂與患心臟病一定有關(guān)系
B.在犯錯誤的概率不超過0.010的前提下,認為禿頂與患心臟病有關(guān)系
C.我們有1%的把握認為禿頂與患心臟病有關(guān)系
D.在犯錯誤的概率不超過0.010的前提下,認為禿頂與患心臟病沒有關(guān)系

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=log2(x2+x)則f(x)的單調(diào)遞增區(qū)間是(0,+∞).

查看答案和解析>>

同步練習冊答案