精英家教網 > 高中數學 > 題目詳情
8.已知f(x)是R上的奇函數,當x≥0時,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),0≤x<1}\\{1-|x-3|,x≥1}\end{array}\right.$則函數y=f(x)+$\frac{1}{2}$的所有零點之和是(  )
A.1-$\sqrt{2}$B.$\sqrt{2}$-1C.5-$\sqrt{2}$D.$\sqrt{2}$-5

分析 根據分段函數和奇函數的性質分別求出每段上的零點,再求其和即可.

解答 解:當x≥1時,
則1-|x-3|+$\frac{1}{2}$=0,解得x=$\frac{9}{2}$,或x=$\frac{3}{2}$,
當0≤x<1時,則log${\;}_{\frac{1}{2}}$(x+1)+$\frac{1}{2}$=0,解得x=$\sqrt{2}$-1,
∵f(x)為奇函數,
∴當-1<x<0時,f(x)=-log${\;}_{\frac{1}{2}}$(-x+1),則-log${\;}_{\frac{1}{2}}$(-x+1)+$\frac{1}{2}$=0,解得x=1-$\frac{\sqrt{2}}{2}$(舍去),
當x≤-1時,f(x)=-1+|x+3|,則-1+|x+3|+$\frac{1}{2}$=0,解得x=-$\frac{7}{2}$或x=-$\frac{5}{2}$,
故所有的零點之和為$\frac{9}{2}$+$\frac{3}{2}$+$\sqrt{2}$-1-$\frac{7}{2}$-$\frac{5}{2}$=$\sqrt{2}$-1,
故選:B

點評 本題考查了函數的零點和分段函數以及奇函數的性質,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

18.求證:
(1)tanA-$\frac{1}{tanA}$=-$\frac{2}{tan2A}$;
(2)sinθ(1+cos2θ)=sin2θcosθ;
(3)sin2$\frac{α}{4}$=$\frac{1-cos\frac{α}{2}}{2}$;
(4)1+sinα=2cos2($\frac{π}{4}$-$\frac{α}{2}$);
(5)1-sinα=2cos2($\frac{π}{4}$+$\frac{α}{2}$)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.在△ABC中,角A,B,C所對的邊分別為a,b,c,且bcosC=(2a-c)cosB.
(1)求角B的值;
(2)若a,b,c成等差數列,且b=3,求ABB1A1面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知集合An={(x1,x2,…,xn)|xi∈{-1,1}(i=1,2,…,n)}.x,y∈An,x=(x1,x2,…,xn),y=(y1,y2,…,yn),其中xi,yi∈{-1,1}(i=1,2,…,n).定義x⊙y=x1y1+x2y2+…+xnyn.若x⊙y=0,則稱x與y正交.
(Ⅰ)若x=(1,1,1,1),寫出A4中與x正交的所有元素;
(Ⅱ)令B={x⊙y|x,y∈An}.若m∈B,證明:m+n為偶數;
(Ⅲ)若A⊆An,且A中任意兩個元素均正交,分別求出n=8,14時,A中最多可以有多少個元素.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.如圖,ABCD-A1B1C1D1是正方體,O、M、N分別是B1D1、AB1、AD1的中點,直線A1C交平面AB1D1于點P.
(Ⅰ)證明:MN∥平面CB1D1;
(Ⅱ)證明:①A、P、O、C四點共面;②A、P、O三點共線.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.在面積為1的等邊三角形ABC內任取一點,使三角形△ABP,△ACP,△BCP的面積都小于$\frac{1}{2}$的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.某同學用“五點法”畫函數f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一個周期內的圖象時,列表并填入了部分數據,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x            $\frac{π}{3}$      $\frac{5π}{6}$        
Asin(ωx+φ)02-20
(1)請將上表數據補充完整,并直接寫出函數f(x)的解析式;
(2)將函數y=f(x)的圖象向左平移$\frac{π}{4}$個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數y=g(x)的圖象,求g(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.定義域是一切實數的函數y=f(x),其圖象是連續(xù)不斷的,且存在常數λ(λ∈R)使得f(x+λ)+λf(x)=0對任意實數x都成立,則稱f(x)實數一個“λ一半隨函數”,有下列關于“λ一半隨函數”的結論:①若f(x)為“1一半隨函數”,則f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax為一個“λ一半隨函數;③“$\frac{1}{2}$一半隨函數”至少有一個零點;④f(x)=x2是一個“λ一班隨函數”;其中正確的結論的個數是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.函數y=$\frac{2x}{{2}^{x}+1}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

同步練習冊答案