分析 (1)由韋達(dá)定理可得 tanα+tanβ 和tanαtanβ,利用兩角和的正切公式求出tan(α+β)的值,由α+β 的范圍求出α+β 的值.
(2)由α+β 的值,可求2(α+β)的值,利用正切函數(shù)的圖象可求tan2(α+β)的值.
解答 解:(1)由韋達(dá)定理可得 tanα+tanβ=5,tanαtanβ=6,
故有 tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=-1,
又tanα>0,tanβ>0,且α,β∈(0,π),
∴α,β∈(0,$\frac{π}{2}$),α+β∈(0,π),
∴α+β=$\frac{3π}{4}$.
(2)∵α+β=$\frac{3π}{4}$.
∴2(α+β)=$\frac{3π}{2}$,
∴tan2(α+β)的值不存在.
點(diǎn)評(píng) 本題考查兩角和的正切公式,正切函數(shù)的圖象,根據(jù)三角函數(shù)的值求角,求出α+β=$\frac{3π}{4}$,是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8π | B. | 16π | C. | 20π | D. | 24π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 9 | C. | 12 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (e,+∞) | B. | (1,+∞) | C. | (-∞,0) | D. | (-∞,$\frac{1}{e}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com