18.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,則$f(\frac{π}{3})$=1.

分析 根據(jù)已知中函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象,求出函數(shù)的解析式,將x=$\frac{π}{3}$代入可得答案.

解答 解:由已知可得:$\frac{3T}{4}$=$\frac{11π}{12}$$-\frac{π}{6}$=$\frac{3π}{4}$,
故T=π,
又由ω>0可得:
ω=2;
由函數(shù)的最大值為2,最小值為-2,A>0得:
A=2,
故函數(shù)f(x)=2sin(2x+φ)過($\frac{π}{6}$,2)點(diǎn),
即sin($\frac{π}{3}$+φ)=1,
解得:$\frac{π}{3}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
即φ=$\frac{π}{6}$+2kπ,k∈Z,
∵0<φ<π,
∴φ=$\frac{π}{6}$,
∴f(x)=2sin(2x+$\frac{π}{6}$),
∴$f(\frac{π}{3})$=2sin$\frac{5π}{6}$=1,
故答案為:1.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是正弦函數(shù)的圖象,根據(jù)已知,求出函數(shù)的解析式,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2-bx+c,若f(-1)=f(3)且f(0)=3.
(1)求b、c的值;
(2)若函數(shù)g(x)是定義在R上的奇函數(shù),且滿足當(dāng)x>0時(shí),g(x)=f(x),試求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.直線$\sqrt{3}$x-y+2014=0的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)方程${log_4}x-{(\frac{1}{4})^x}=0$、${log_{\frac{1}{4}}}x-{(\frac{1}{4})^x}=0$的根分別為 x1、x2,則( 。
A.$\frac{1}{2}$<x1x2<1B.x1x2=1C.1<x1x2<2D.x1x2≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=|x2-2x|,設(shè)關(guān)于x的方程f[f(x)]=a(a∈R)的實(shí)數(shù)根的個(gè)數(shù)為g(a),有下列五個(gè)命題:
①g(0)=4;
②g(1)=6;
③當(dāng)a<0時(shí),g(a)=0;
④當(dāng)0<a<1時(shí),g(a)=8;
⑤當(dāng)a>1時(shí),g(a)=3.
其中正確的有①③④(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,則實(shí)數(shù)a為( 。
A.-1B.0C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2sin(2x+$\frac{π}{6}$)-1
(1)求函數(shù)f(x)的最大值和最小值及取得最大、最小值時(shí)的自變量x的集合;
(2)當(dāng)x∈[-π,π]時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題“若x<0,則x<1”的否命題是( 。
A.若x<0,則x≥1B.若x<1,則x<0C.若x≥1,則 x≥0D.若x≥0,則 x≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知點(diǎn)A(1,-3),B(1,.2),C(5,y)若△ABC是直角三角形,則y的值為-3或2.

查看答案和解析>>

同步練習(xí)冊(cè)答案