分析 根據(jù)已知中函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象,求出函數(shù)的解析式,將x=$\frac{π}{3}$代入可得答案.
解答 解:由已知可得:$\frac{3T}{4}$=$\frac{11π}{12}$$-\frac{π}{6}$=$\frac{3π}{4}$,
故T=π,
又由ω>0可得:
ω=2;
由函數(shù)的最大值為2,最小值為-2,A>0得:
A=2,
故函數(shù)f(x)=2sin(2x+φ)過($\frac{π}{6}$,2)點(diǎn),
即sin($\frac{π}{3}$+φ)=1,
解得:$\frac{π}{3}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
即φ=$\frac{π}{6}$+2kπ,k∈Z,
∵0<φ<π,
∴φ=$\frac{π}{6}$,
∴f(x)=2sin(2x+$\frac{π}{6}$),
∴$f(\frac{π}{3})$=2sin$\frac{5π}{6}$=1,
故答案為:1.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是正弦函數(shù)的圖象,根據(jù)已知,求出函數(shù)的解析式,是解答的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$<x1x2<1 | B. | x1x2=1 | C. | 1<x1x2<2 | D. | x1x2≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x<0,則x≥1 | B. | 若x<1,則x<0 | C. | 若x≥1,則 x≥0 | D. | 若x≥0,則 x≥1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com