6.已知隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),若P(ξ>3)=0.023,則P(-3≤ξ≤3)=(  )
A.0.954B.0.023C.0.977D.0.046

分析 由隨機(jī)變量ξ服從正態(tài)分布N(0,σ2)可知正態(tài)密度曲線關(guān)于y軸對稱,由圖象的對稱性可得結(jié)果.

解答 解:由隨機(jī)變量ξ服從正態(tài)分布N(0,σ2)可知正態(tài)密度曲線關(guān)于y軸對稱,
而P(ξ>3)=0.023,則P(ξ<-3)=0.023,
故P(-3≤ξ≤3)=1-P(ξ>3)-P(ξ<-3)=0.954,
故選:A.

點(diǎn)評 本題主要考查正態(tài)分布的概率求法,結(jié)合正態(tài)曲線,加深對正態(tài)密度函數(shù)的理解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將二進(jìn)制數(shù)11011(2)轉(zhuǎn)換為10進(jìn)制數(shù)為27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F2且垂直于x軸的直線與橢圓C相交于A,B兩點(diǎn),|AB|=$\frac{8\sqrt{5}}{5}$,點(diǎn)P是橢圓C上的動(dòng)點(diǎn),且cos∠F1PF2的最小值為$\frac{3}{5}$.
(1)求橢圓C的方程;
(2)過點(diǎn)(-2,0)的直線l與橢圓相交于M,N兩點(diǎn),求$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.考拉茲猜想又名3n+1猜想,是指對于每一個(gè)正整數(shù),如果它是奇數(shù),則對它乘3再加1;如果它是偶數(shù),則對它除以2.如此循環(huán),最終都能得到1.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)程序,輸出的結(jié)果i=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)為定義在R上的奇函數(shù),當(dāng)x≥0,f(x)=log3(x+3)-a,則不等式|f(x)|<1的解集為(-6,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若x,y滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y>-1\end{array}\right.$,則$z=\frac{y}{x+1}$的范圍是$(-∞,\frac{1}{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)是R上的奇函數(shù)f(x+4)=f(x),當(dāng)x∈[0,1]時(shí),f(x)=3x,則f(11.5)=(  )
A.1.5B.0.5C.-1.5D.-0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=logax,y=ax,y=x+a在同一坐標(biāo)系中的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=-x5-3x3-5x+3,若f(a)+f(a-2)>6,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,3)B.(3,+∞)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

同步練習(xí)冊答案