精英家教網 > 高中數學 > 題目詳情

【題目】設函數,曲線在點處的切線方程為.

(Ⅰ)求實數, 的值;

(Ⅱ)若, , ,試判斷 , 三者是否有確定的大小關系,并說明理由.

【答案】(Ⅰ) , ;(Ⅱ) ;理由見解析.

【解析】試題分析:

() 由題意可得,求解可得結論;

(Ⅱ) (),(i) ,利用對數的運算性質與基本不等式求解可得結論; (ii) , 設函數 ,求導并判斷函數的單調性,易得結論; (iii) , , ,同理求解即可.

試題解析:

(Ⅰ) .

由于所以, .

(Ⅱ)由(Ⅰ)知.

(i) ,

,故

(ii) =.

設函數,

, .

時, ,所以上單調遞增;

,因此上單調遞增.

,所以,即,即

(iii) =.

, .

,有.

時, ,所以上單調遞增,有.

所以上單調遞增.

,所以,即,故

綜上可知:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在五面體ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M為EC的中點,AF=AB=BC=FE= AD,

(1)求異面直線BF與DE所成的角的大。
(2)證明平面AMD⊥平面CDE;
(3)求二面角A﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x3+ax2+bx+a2(a>0)在x=1處有極值10.
(1)求a、b的值;
(2)求f(x)的單調區(qū)間;
(3)求f(x)在[0,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正方體ABCD﹣A1B1C1D1中,E、F分別是AA1、AB的中點,則EF與對角面A1C1CA所成角的度數是(
A.30°
B.45°
C.60°
D.150°

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,橢圓的離心率為,頂點為,且

(1)求橢圓的方程;

(2)是橢圓上除頂點外的任意點,直線軸于點,直線于點.設的斜率為, 的斜率為,試問是否為定值?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C1和雙曲線C2焦點相同,且離心率互為倒數,F1 , F2它們的公共焦點,P是橢圓和雙曲線在第一象限的交點,當∠F1PF2=60°時,則橢圓C1的離心率為( 。
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設直線與拋物線相交于不同兩點、,與圓相切于點,且為線段中點

(1)是正三角形(是坐標原點),求此三角形的邊長;

(2) 若,求直線的方程;

(3)進行討論,請你寫出符合條件的直線(直接寫出結論).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】高三年級從甲(文)、乙(理)兩個科組各選出7名學生參加高校自主招生數學選拔考試,他們取得的成績的莖葉圖如圖所示,其中甲組學生的平均分是85,乙組學生成績的中位數是83.

(1)求x和y的值;
(2)計算甲組7位學生成績的方差S2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】己知函數 (其中e為自然對數的底數),

(I)求函數的單調區(qū)間;

(II)設,.已知直線是曲線的切線,且函數上是增函數.

(i)求實數的值;

(ii)求實數c的取值范圍.

查看答案和解析>>

同步練習冊答案