4.已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令${b_n}={a_n}•{3^n}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和.

分析 (1)利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)利用錯(cuò)位相減法與等比數(shù)列的求和公式即可的.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a1=2,a1+a2+a3=12.
∴3×2+3d=12,解得d=2.
∴an=2+2(n-1)=2n.
(2)${b_n}={a_n}•{3^n}$=2n•3n,
∴數(shù)列{bn}的前n項(xiàng)和Tn=2(3+2×32+3×33+…+n•3n).
3Tn=2[32+2×33+…+(n-1)•3n+n•3n+1],
∴-2Tn=2(3+32+…+3n)-2×n•3n+1=2×$\frac{3({3}^{n}-1)}{3-1}$-2×n•3n+1,
化為:Tn=$\frac{(2n-1)•{3}^{n+1}+3}{2}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、錯(cuò)位相減法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河南八市高二文上月考一數(shù)學(xué)試卷(解析版) 題型:選擇題

若變量滿足約束條件,則目標(biāo)函數(shù)的最小值為( )

A.-5 B.-4

C.-2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x3-12x.
(1)求這個(gè)函數(shù)在點(diǎn)(1,f(1))處的切線方程;
(2)求這個(gè)函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.為了得到函數(shù)$y=2sin({\frac{x}{3}+\frac{π}{4}})$,x∈R的圖象,只需把函數(shù)y=2sinx,x∈R的圖象上所有的點(diǎn)(  )
A.向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{3}$倍 (縱坐標(biāo)不變)
B.向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{3}$倍(縱坐標(biāo)不變)
C.向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變)
D.向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知不等式(m2+4m-5)x2-4(m-1)x+3>0對(duì)一切實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍為( 。
A.(-∞,-5)∪(1,+∞)B.(1,19)C.[1,19)D.(19,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.閱讀下列程序:

若輸入5,則程序運(yùn)行的結(jié)果為( 。
A.1B.10C.25D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.α為第三象限的角,則$\frac{{\sqrt{1+cos2α}}}{cosα}-\frac{{\sqrt{1-cos2α}}}{sinα}$=( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若x、y滿足約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y-2≤0}\\{2x-y-2≥0}\end{array}\right.$,則z=x+2y的最大值為( 。
A.-4B.2C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,|OF2|為半徑的圓與該雙曲線右支交于A、B兩點(diǎn),若△F1AB是等邊三角形,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.$\sqrt{3}$-1D.1+$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案