分析 (1)利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)利用錯(cuò)位相減法與等比數(shù)列的求和公式即可的.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a1=2,a1+a2+a3=12.
∴3×2+3d=12,解得d=2.
∴an=2+2(n-1)=2n.
(2)${b_n}={a_n}•{3^n}$=2n•3n,
∴數(shù)列{bn}的前n項(xiàng)和Tn=2(3+2×32+3×33+…+n•3n).
3Tn=2[32+2×33+…+(n-1)•3n+n•3n+1],
∴-2Tn=2(3+32+…+3n)-2×n•3n+1=2×$\frac{3({3}^{n}-1)}{3-1}$-2×n•3n+1,
化為:Tn=$\frac{(2n-1)•{3}^{n+1}+3}{2}$.
點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、錯(cuò)位相減法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河南八市高二文上月考一數(shù)學(xué)試卷(解析版) 題型:選擇題
若變量滿足約束條件,則目標(biāo)函數(shù)的最小值為( )
A.-5 B.-4
C.-2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{3}$倍 (縱坐標(biāo)不變) | |
B. | 向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{3}$倍(縱坐標(biāo)不變) | |
C. | 向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變) | |
D. | 向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-5)∪(1,+∞) | B. | (1,19) | C. | [1,19) | D. | (19,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | 2 | C. | $\frac{8}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{3}$-1 | D. | 1+$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com