16.α為第三象限的角,則$\frac{{\sqrt{1+cos2α}}}{cosα}-\frac{{\sqrt{1-cos2α}}}{sinα}$=( 。
A.0B.1C.-1D.2

分析 利用二倍角化簡(jiǎn)可得答案.

解答 解:α為第三象限的角,
∴sinα、cosα<0.
則$\frac{{\sqrt{1+cos2α}}}{cosα}-\frac{{\sqrt{1-cos2α}}}{sinα}$=$\frac{\sqrt{1+2co{s}^{2}α-1}}{cosα}$$-\frac{\sqrt{1-(1-2si{n}^{2}α)}}{sinα}$=$\sqrt{2}$$(\frac{-cosα}{cosα}-\frac{-sinα}{sinα})=0$.
故選:A.

點(diǎn)評(píng) 本題考查了二倍角化簡(jiǎn)和運(yùn)用能力.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年重慶市高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,點(diǎn)上的一點(diǎn),射線的延長(zhǎng)線于點(diǎn),若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某學(xué)習(xí)小組、男女生共8人,現(xiàn)從男生中選2人,從女生中選1人,分別去做3種不同的工作,共有90種不同的選法,則男、女生人數(shù)為( 。
A.男2人,女6人B.男3人,女5人C.男5人,女3人D.男6人,女2人

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令${b_n}={a_n}•{3^n}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知?(x)=sin (x+$\frac{π}{6}$),若cos α=$\frac{3}{5}$(0<α<$\frac{π}{2}$),則f(α+$\frac{π}{12}$)=$\frac{7\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=sin($\frac{k}{2}$x+$\frac{π}{3}$)(k>0)的最小正周期不大于2,則正整數(shù)k的最小值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知中心在原點(diǎn)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{1}{2}$,其中一個(gè)頂點(diǎn)是(0,-$\sqrt{3}$)
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)P(-2,1)的直線l與橢圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知A(0,1),B、C為橢圓x2+my2=m(m>1)上的三個(gè)不同點(diǎn),AB⊥AC.
(Ⅰ)當(dāng)橢圓長(zhǎng)軸長(zhǎng)為4時(shí),求橢圓的離心率e;
(Ⅱ)求△ABC面積的最大值f(m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在數(shù)列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),則$\frac{{a}_{3}}{{a}_{4}}$=( 。
A.$\frac{1}{8}$B.$\frac{1}{6}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案