12.已知函數(shù)f(x)的定義域為[-1,5],部分對應值如表:
x-10245
f(x)12021
f(x)的導函數(shù)y=f′(x)的圖象如圖所示,則f(x)的極小值為0.

分析 由導數(shù)圖象可知導函數(shù)的符號,從而可判斷函數(shù)的單調性,得函數(shù)的極值即可.

解答 解:由導數(shù)圖象可知,當-1<x<0或2<x<4時,f'(x)>0,函數(shù)單調遞增,
當0<x<2或4<x<5,f'(x)<0,函數(shù)單調遞減,
所以當x=0和x=4時,函數(shù)取得極大值f(0)=2,f(4)=2,
當x=2時,函數(shù)取得極小值f(2)=0,
所以f(x)的極小值為0,
故答案為:0.

點評 本題考查導數(shù)知識的運用,考查導函數(shù)與原函數(shù)圖象之間的關系,正確運用導函數(shù)圖象是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知等比數(shù)列{an}的首項a1=1,公比為q,試就q的不同取值情況,討論二元一次方程組$\left\{\begin{array}{l}{a_1}x+{a_3}y=3\\{a_2}x+{a_4}y=-2\end{array}\right.$何時無解,何時有無窮多解?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知三棱柱ABC-A1B1C1中,AA1=B1C=2AB=2AC=2,∠BAC=90°,∠BAA1=120°.
(1)求證:AB⊥平面AB1C;  
(2)求多面體CAA1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知{an}是首項為1的等差數(shù)列,{bn}是首項為2且各項均為正數(shù)的等比數(shù)列,且滿足a2+a3=b3,5+b2=3a2
(1)求{an}和{bn}的通項公式;
(2)設cn=(-1)nanan+1,求數(shù)列{cn}的前2n項和T2n;
(3)設{bn}的前n項和為Sn,是否存在正整數(shù)n,t,使得$\frac{{S}_{n}-t_{n}}{{S}_{n+1}-t_{n+1}}$<$\frac{1}{16}$成立?若存在,求出正整數(shù)n,t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.命題:“?x∈R,x2+mx+2≤0”為假命題,是命題|m-1|<2的( 。
A.充分不必要條件B.必要非充分條件C.充要條件D.都不是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.拋物線頂點在原點,以x軸為對稱軸,過焦點且垂直于對稱軸的弦長為8,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=alnx+$\frac{1}{x}$,曲線f(x)在點(1,f(1))處的切線平行于x軸.
(1)求f(x)的最小值;
(2)比較f(x)與$f(\frac{1}{x})$的大;
(3)證明:x>0時,xexlnx+ex>x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.命題“存在x0≥0,${2}^{{x}_{0}}$≤0”的否定是( 。
A.不存在x0≥0,${2}^{{x}_{0}}$>0B.存在x0≥0,${2}^{{x}_{0}}$≥0
C.對任意的x0≥0,2x≤0D.對任意的x0≥0,2x>0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.北京某小學組織6個年級的學生外出參觀包括甲博物館在內的6個博物館,每個年級任選一個博物館參觀,則有
且只有兩個年級選擇甲博物館的方案有( 。
A.6 2×A 5 4B.6 2×5 4C.6 2×A 5 4D.6 2×5 4

查看答案和解析>>

同步練習冊答案