x | -1 | 0 | 2 | 4 | 5 |
f(x) | 1 | 2 | 0 | 2 | 1 |
分析 由導數(shù)圖象可知導函數(shù)的符號,從而可判斷函數(shù)的單調性,得函數(shù)的極值即可.
解答 解:由導數(shù)圖象可知,當-1<x<0或2<x<4時,f'(x)>0,函數(shù)單調遞增,
當0<x<2或4<x<5,f'(x)<0,函數(shù)單調遞減,
所以當x=0和x=4時,函數(shù)取得極大值f(0)=2,f(4)=2,
當x=2時,函數(shù)取得極小值f(2)=0,
所以f(x)的極小值為0,
故答案為:0.
點評 本題考查導數(shù)知識的運用,考查導函數(shù)與原函數(shù)圖象之間的關系,正確運用導函數(shù)圖象是關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要非充分條件 | C. | 充要條件 | D. | 都不是 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 不存在x0≥0,${2}^{{x}_{0}}$>0 | B. | 存在x0≥0,${2}^{{x}_{0}}$≥0 | ||
C. | 對任意的x0≥0,2x≤0 | D. | 對任意的x0≥0,2x>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | A 6 2×A 5 4種 | B. | A 6 2×5 4種 | C. | C 6 2×A 5 4種 | D. | C 6 2×5 4 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com