【題目】在直角坐標(biāo)系中,曲線(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的方程為:
當(dāng)極點(diǎn)到直線的距離為時(shí),求直線的直角坐標(biāo)方程;
若直線與曲線有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍
【答案】(1) (2)
【解析】
(1)將直線的方程化為直角坐標(biāo)方程,由點(diǎn)到直線的距離公式求出值,可得直線的方程;(2)曲線中消去參數(shù),得出普通方程,并根據(jù)三角函數(shù)的有界性求出的取值范圍,將直線與曲線有兩個(gè)不同的交點(diǎn),轉(zhuǎn)化為直線與二次函數(shù)有兩個(gè)不同的交點(diǎn),通過二次函數(shù)圖象可得出的取值范圍。
(1)直線的方程為:
則直角坐標(biāo)方程為
極點(diǎn)到直線的距離為:;解得
故直線的直角坐標(biāo)方程為
(2)曲線的普通方程為
直線的普通方程為
聯(lián)立曲線與直線的方程,消去可得
即與在上有兩個(gè)不同的交點(diǎn)
的最大值為;且;
實(shí)數(shù)的范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
求的單調(diào)區(qū)間;
當(dāng)時(shí),若對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;
證明不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于、兩點(diǎn),若存在點(diǎn)使得為等邊三角形,則( )
A. 8 B. 10 C. 12 D. 14
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),橢圓C:的左、右焦點(diǎn)分別為,,右頂點(diǎn)為A,上頂點(diǎn)為B,若,,成等比數(shù)列,橢圓C上的點(diǎn)到焦點(diǎn)的距離的最大值為.
求橢圓C的標(biāo)準(zhǔn)方程;
過該橢圓的右焦點(diǎn)作傾角為的直線與橢圓交于M,N兩點(diǎn),求的內(nèi)切圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的方程為:
當(dāng)極點(diǎn)到直線的距離為時(shí),求直線的直角坐標(biāo)方程;
若直線與曲線有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計(jì)”課程是否與性別有關(guān),隨機(jī)抽取了選修課程的55名學(xué)生,得到數(shù)據(jù)如下表:
喜歡統(tǒng)計(jì)課程 | 不喜歡統(tǒng)計(jì)課程 | |
男生 | 20 | 5 |
女生 | 10 | 20 |
臨界值參考:
0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“喜歡“應(yīng)用統(tǒng)計(jì)”課程與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“喜歡“應(yīng)用統(tǒng)計(jì)”課程與性別無關(guān)”
C.有以上的把握認(rèn)為“喜歡應(yīng)用統(tǒng)計(jì)”課程與性別有關(guān)”
D.有以上的把握認(rèn)為“喜歡“應(yīng)用統(tǒng)計(jì)”課程與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知過原點(diǎn)O的直線與函數(shù)的圖象交于A,B兩點(diǎn),分別過A,B作y軸的平行線與函數(shù)圖象交于C,D兩點(diǎn),若軸,則四邊形ABCD的面積為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com