10.點(diǎn)P(5,-2)關(guān)于直線x-y+5=0 對(duì)稱的點(diǎn)Q的坐標(biāo)(-7,10).

分析 由條件利用垂直、中點(diǎn)在對(duì)稱軸上這2個(gè)條件,求得對(duì)稱點(diǎn)Q的坐標(biāo).

解答 解:設(shè)點(diǎn)P(5,-2)關(guān)于直線x-y+5=0 對(duì)稱的點(diǎn)Q的坐標(biāo)為(a b),
則由$\left\{\begin{array}{l}{\frac{b+2}{a-5}•1=-1}\\{\frac{a+5}{2}-\frac{b-2}{2}+5=0}\end{array}\right.$,
求得$\left\{\begin{array}{l}{a=-7}\\{b=10}\end{array}\right.$,故點(diǎn)Q的坐標(biāo)為(-7,10),
故答案為:(-7,10).

點(diǎn)評(píng) 本題主要考查求一個(gè)點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo)的方法,利用了垂直、中點(diǎn)在對(duì)稱軸上這2個(gè)條件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若a,b,c為實(shí)數(shù),下列結(jié)論正確的是( 。
A.若a>b,c>d,則ac>bdB.若a<b<0,則a2>ab>b2
C.若a<b<0,則$\frac{1}{a}<\frac{1}$D.若a<b<0,則$\frac{a}>\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=2ax-$\frac{x}$+lnx在x=1與x=$\frac{1}{2}$處都取得極值.
(1)求a,b的值;
(2)若對(duì)x∈[$\frac{1}{4}$,1]時(shí),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知f(x)=x2,g(x)=-log3x-m,若存在x1∈[-1,3],x2∈[1,3],使得f(x1)≥g(x2)成立,則實(shí)數(shù)m的取值范圍是[-10+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.現(xiàn)用數(shù)學(xué)歸納法證明“空間中n個(gè)平面,最多將空間分成$\frac{{{n^3}+5n+6}}{6}$個(gè)區(qū)域”,過(guò)程中由n=k到n=k+1時(shí),應(yīng)證明區(qū)域個(gè)數(shù)增加了( 。
A.$\frac{{{k^2}+k+2}}{2}$B.k2+k+2C.$\frac{{{k^2}+k}}{6}$D.$\frac{{{k^2}+1}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知復(fù)數(shù)z=(m2-4)+(m2-5m+6)i,其中m∈R
(1)若復(fù)數(shù)z=0,求m的值;
(2)若復(fù)數(shù)z為純虛數(shù),求m的值;
(3)若復(fù)數(shù)z在復(fù)平面上所表示的點(diǎn)在第四象限,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.直線l經(jīng)過(guò)點(diǎn)(0,1)且傾斜角的余弦值為$\frac{3}{5}$,則直線l的斜截式方程為y=$\frac{4}{3}$x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知$\overrightarrow m$=($\sqrt{3}$sinx,2),$\overrightarrow n$=(2cosx,cos2x),f(x)=$\overrightarrow m•\overrightarrow n$.
(1)求f(x)的解析式及最小正周期
(2)求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知直線y=kx+1(k≠0)交拋物線x2=4y于E、F兩點(diǎn),以EF為直徑的圓被x軸截得的弦長(zhǎng)為2$\sqrt{7}$,則k=±1.

查看答案和解析>>

同步練習(xí)冊(cè)答案