【題目】某人做試驗(yàn),從一個(gè)裝有標(biāo)號(hào)為1,2,3,4的小球的盒子中,無(wú)放回地取兩個(gè)小球,每次取一個(gè),先取的小球的標(biāo)號(hào)為,后取的小球的標(biāo)號(hào)為,這樣構(gòu)成有序?qū)崝?shù)對(duì)

1)寫(xiě)出這個(gè)試驗(yàn)的所有結(jié)果;

2)求“第一次取出的小球上的標(biāo)號(hào)為”的概率.

【答案】1,,,,,,,;(2.

【解析】

1)先將第一個(gè)小球的可能情況x列出,再針對(duì)每種情況x列出第二個(gè)小球的可能情況y,注意無(wú)放回地取出兩個(gè)小球,然后寫(xiě)出結(jié)果即可;

2)“第一次取出的小球上的標(biāo)號(hào)為”的試驗(yàn)結(jié)果為3種,而這個(gè)試驗(yàn)的所有結(jié)果為12種,結(jié)合古典概型的定義計(jì)算概率即可.

1)當(dāng)時(shí),,;當(dāng)時(shí),,,;當(dāng)時(shí),,,;當(dāng)時(shí),,,.因此,這個(gè)試驗(yàn)的所有結(jié)果是,,,,,,,;

2)記“第一次取出的小球上的標(biāo)號(hào)為”為事件A,則,而這個(gè)試驗(yàn)的所有結(jié)果為12種,則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知無(wú)窮數(shù)列的前n項(xiàng)和為,記 ,…, 中奇數(shù)的個(gè)數(shù)為

(Ⅰ)若= n,請(qǐng)寫(xiě)出數(shù)列的前5項(xiàng);

(Ⅱ)求證:"為奇數(shù), (i = 2,3,4,...)為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的充分不必要條件;

(Ⅲ)若,i=1, 2, 3,…,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若處取得極值,求的值;

(2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)上的點(diǎn)與定點(diǎn)的距離與它到直線(xiàn)的距離的比是常數(shù),又斜率為的直線(xiàn)與曲線(xiàn)交于不同的兩點(diǎn)。

(Ⅰ)求曲線(xiàn)的方程;

(Ⅱ)若,求 的最大值;

(Ⅲ)設(shè),直線(xiàn)與曲線(xiàn)的另一個(gè)交點(diǎn)為,直線(xiàn)與曲線(xiàn)的另一個(gè)交點(diǎn)為.和點(diǎn) 共線(xiàn),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為的正三角形三個(gè)頂點(diǎn)都在球的表面上,且球心到平面的距離為該球半徑的一半,則球的表面積為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)市場(chǎng)調(diào)查,超市中的某種小商品在過(guò)去的近40天的日銷(xiāo)售量(單位:件)與價(jià)格(單位:元)為時(shí)間(單位:天)的函數(shù),且日銷(xiāo)售量近似滿(mǎn)足,價(jià)格近似滿(mǎn)足

(1)寫(xiě)出該商品的日銷(xiāo)售額(單位:元)與時(shí)間)的函數(shù)解析式并用分段函數(shù)形式表示該解析式(日銷(xiāo)售額=銷(xiāo)售量商品價(jià)格);

(2)求該種商品的日銷(xiāo)售額的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(Ⅰ)求的值;

(Ⅱ)求函數(shù)上的單調(diào)區(qū)間;

(Ⅲ)若對(duì)任意都有,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,FBE的中點(diǎn),

求證:(1平面ABC;

2平面EDB.

3)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差/攝氏度

10

11

13

12

8

發(fā)芽數(shù)/顆

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線(xiàn)性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;

(2)若選取的是12月1日與12月5日的2組數(shù)據(jù),請(qǐng)根據(jù)12月2日至4日的數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸方程,由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,試問(wèn)(2)中所得的線(xiàn)性回歸方程是否可靠?

附:參考公式:.

查看答案和解析>>

同步練習(xí)冊(cè)答案