年 級 性 別 | 高一年級 | 高二年級 | 高三年級 |
男 | 520 | y | 400 |
女 | x | 610 | 600 |
分析 (1)依題意得:$\frac{20}{n}=\frac{10}{33}$,求出n=66,從而得到高一年級被抽取的人數(shù)為24.由此能求出x,y.
(2)若用分層抽樣的方法在高三年級抽取一個容量為5的樣本,設抽取男生的人數(shù)為m,則$\frac{m}{5}=\frac{400}{600+400}$,解得m=2,從而應抽取男生2人,女生3人,分別記作A1、A2;B1、B2、B3,利用列舉法能求出至少有1人是男生的概率.
解答 解:(1)依題意得:$\frac{20}{n}=\frac{10}{33}$,解得n=66.…(2分)
所以高一年級被抽取的人數(shù)為66-22-20=24.
所以$\frac{20}{1000}=\frac{24}{520+x}=\frac{22}{y+610}$,解得x=680,y=490.…(6分)
(2)若用分層抽樣的方法在高三年級抽取一個容量為5的樣本,
設抽取男生的人數(shù)為m,則$\frac{m}{5}=\frac{400}{600+400}$,解得m=2,
所以應抽取男生2人,女生3人,分別記作A1、A2;B1、B2、B3.…(8分)
記“從中任取2人,至少有1人是男生”為事件A.
從中任取2人的所有基本事件共10個:(A1,A2),(A1,B1),(A1,B2),(A1,B3),
(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3).
其中至少有1人為男生的基本事件有7個:
(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3).
所以從中從中任取2人,至少有1人是男生的概率為$\frac{7}{10}$.…(13分)
∴至少有1人是男生的概率$\frac{7}{10}$.…(14分)
點評 本題考查實數(shù)值的求法,考查概率的求法,是基礎題,解題時要認真審題,注意列舉法的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-2,-1,0,1} | B. | {-2,-1,0} | C. | {-2,-1} | D. | {-1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com