A. | a>0,c<0,d>0 | B. | a>0,c>0,d<0 | C. | a<0,c<0,d<0 | D. | a<0,c>0,d<0 |
分析 由已知中函數(shù)f(x)=ax3+bx2+cx+d的圖象,根據(jù)其與y軸交點(diǎn)的位置,可以判斷d的符號(hào),進(jìn)而根據(jù)其單調(diào)性和極值點(diǎn)的位置,可以判斷出其中導(dǎo)函數(shù)圖象的開(kāi)口方向(可判斷a的符號(hào))及對(duì)應(yīng)函數(shù)兩個(gè)根的情況,結(jié)合韋達(dá)定理,可分析出b,c的符號(hào),進(jìn)而得到答案.
解答 解:∵函數(shù)f(x)=ax3+bx2+cx+d的圖象與y軸交點(diǎn)的縱坐標(biāo)為正,故d<0;
∵f(x)=ax3+bx2+cx+d的圖象有兩個(gè)遞增區(qū)間,有一個(gè)遞增區(qū)間,
∴f′(x)=3ax2+2bx+c的圖象開(kāi)口方向朝上,且于x軸有兩個(gè)交點(diǎn),故a<0,
又∵f(x)=ax3+bx2+cx+d的圖象的極小值點(diǎn)和極大值點(diǎn)在y軸左側(cè),且極大值點(diǎn)離y軸近,
∴f′(x)=3ax2+2bx+c=0的兩根x1,x2滿足,
x1+x2<0,則b>0,x1•x2>0,則c<0,
綜上a<0,c<0,d<0,
故選:B.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的圖象與圖象變化,其中根據(jù)圖象的形狀分析其導(dǎo)函數(shù)的性質(zhì)是解答本題的關(guān)鍵,同時(shí)由于本題涉及到導(dǎo)數(shù),二次函數(shù)的圖象和性質(zhì),函數(shù)的單調(diào)性,函數(shù)取極值的條件等諸多難點(diǎn),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{3}{4}$,0) | B. | [-$\frac{3}{4}$,0] | C. | [-$\frac{1}{2}$,1) | D. | [-$\frac{1}{2}$,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1) | B. | (1,+∞) | C. | (2,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com