【題目】某玩具生產公司每天計劃生產衛(wèi)兵、騎兵、傘兵這三種玩具共100個,生產一個衛(wèi)兵需5分鐘,生產一個騎兵需7分鐘,生產一個傘兵需4分鐘,已知總生產時間不超過10小時.若生產一個衛(wèi)兵可獲利潤5元,生產一個騎兵可獲利潤6元,生產一個傘兵可獲利潤3元.
(1)用每天生產的衛(wèi)兵個數(shù)x與騎兵個數(shù)y表示每天的利潤W(元);
(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?
【答案】(1)W=2x+3y+300(x,y∈N)(2)每天生產衛(wèi)兵50個,騎兵50個,傘兵0個時利潤最大,為550(元)
【解析】
試題分析:(1)依題意,每天生產的傘兵的個數(shù)為100-x-y,根據(jù)題意即可得出每天的利潤;(2)先根據(jù)題意列出約束條件,再根據(jù)約束條件畫出可行域,設W=2x+3y+300,再利用T的幾何意義求最值,只需求出直線0=2x+3y過可行域內的點A時,從而得到W值即可
試題解析:(1)依題意每天生產的傘兵個數(shù)為100-x-y,
所以利潤W=5x+6y+3(100-x-y)=2x+3y+300(x,y∈N).
(2)約束條件為,整理得
目標函數(shù)為W=2x+3y+300,如圖所示,作出可行域.
初始直線l0:2x+3y=0,平移初始直線經過點A時,W有最大值.
由得最優(yōu)解為A(50,50),所以Wmax=550(元).
答:每天生產衛(wèi)兵50個,騎兵50個,傘兵0個時利潤最大,為550(元)
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,點是直線上的一動點,過點作圓的切線,切點為.
(1)當切線的長度為時,求點的坐標;
(2) 若的外接圓為圓,試問:當在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由.
(3)求線段長度的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(1)求的值;
(2)求的單調區(qū)間;
(3)設,其中為的導函數(shù).證明:對任意,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(-4,0)、B(4,0)
(1)若A、B為橢圓的焦點,且橢圓經過C、D兩點,求該橢圓的方程;
(2)若A、B為雙曲線的焦點,且雙曲線經過C、D兩點,求雙曲線的方程;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓:的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點.
(1)求橢圓的方程;
(2)已知為的中點,存在定點,使得對于任意的都有,求點的坐標;
(3)若過點作直線的平行線交橢圓于點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設不等式組所表示的平面區(qū)域為Dn,記Dn內的格點(格點即橫坐標和縱坐標均為整數(shù)的點)的個數(shù)為f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表達式;
(2)設bn=2nf(n),Sn為{bn}的前n項和,求Sn;
(3)記,若對于一切正整數(shù)n,總有Tn≤m成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正四面體的頂點、、分別在兩兩垂直的三條射線, , 上,則在下列命題中,錯誤的是( )
A. 是正三棱錐
B. 直線與平面相交
C. 直線與平面所成的角的正弦值為
D. 異面直線和所成角是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線.
(1)若直線與圓交于不同的兩點,當時,求的值.
(2)若是直線上的動點,過作圓的兩條切線,切點為,探究:直線是否過定點;
(3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC是銳角三角形,cos22A+sin2A=1.
(Ⅰ)求角A;
(Ⅱ)若BC=1,B=x,求△ABC的周長f(x)的單調區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com