10.設(shè)函數(shù)f(x)=x2eax,a>0.
(1)證明:函數(shù)y=f(x)在(0,+∞)上為增函數(shù);
(2)若方程f(x)-1=0有且只有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的值.

分析 (1)求導(dǎo),由x∈(0,+∞)則f′(x)>0,則函數(shù)y=f(x)在(0,+∞)上為增函數(shù);
(2)求導(dǎo),f′(x)=0,根據(jù)函數(shù)的單調(diào)性即可求得f(x)極大值,由f(x)=1有且只有兩個(gè)不同的實(shí)數(shù)根,即$\frac{4}{{a}^{2}{e}^{2}}$=1,即可求得實(shí)數(shù)a的值.

解答 解:(1)證明:f(x)的定義域R,求導(dǎo),f′(x)=2xeax+ax2eax=xeax(ax+2),
當(dāng)x∈(0,+∞)時(shí),a>0,則eax>0,則xeax(ax+2)>0,
則f′(x)>0,
∴函數(shù)y=f(x)在(0,+∞)上為增函數(shù);
(2)令f′(x)=0,記得x=-$\frac{2}{a}$或x=0,

x(-∞,-$\frac{2}{a}$)$\frac{2}{a}$($\frac{2}{a}$,0)0(0,+∞)
f′(x)+0-0+
f(x)遞增極大值遞減極小值遞增
則當(dāng)x=-$\frac{2}{a}$時(shí),函數(shù)有極大值f(-$\frac{2}{a}$)=$\frac{4}{{a}^{2}{e}^{2}}$,
當(dāng)x=0時(shí),函數(shù)有極小值f(0)=0,
當(dāng)x<0時(shí),f(x)>0,x→-∞時(shí),f(x)→0,x→+∞時(shí),f(x)→+∞,
由f(x)-1=0,即f(x)=1有且只有兩個(gè)不同的實(shí)數(shù)根,
即$\frac{4}{{a}^{2}{e}^{2}}$=1,解得:a=$\frac{2}{e}$,(負(fù)根舍去)
實(shí)數(shù)a的值$\frac{2}{e}$.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的綜合應(yīng)用,考查利用導(dǎo)數(shù)與函數(shù)單調(diào)性與極值關(guān)系,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合M={x|x2-4<0},N={x|1≤2x≤8,x∈Z},則N∩M=( 。
A.[0,2)B.{0,1}C.{0,1,2}D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{6}t\end{array}$(t為參數(shù)),曲線C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ為參數(shù)).
(1)設(shè)l與C1相交于A,B兩點(diǎn),求|AB|;
(2)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的$\frac{1}{2}$倍,縱坐標(biāo)壓縮為原來的$\frac{{\sqrt{3}}}{2}$倍,得到曲線C2,設(shè)點(diǎn)P是曲線C2上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.點(diǎn)O是平面上一定點(diǎn),A、B、C是平面上△ABC的三個(gè)頂點(diǎn),∠B、∠C分別是邊AC、AB的對(duì)角,以下命題正確的是①②③④⑤(把你認(rèn)為正確的序號(hào)全部寫上).
①動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$,則△ABC的重心一定在滿足條件的P點(diǎn)集合中;
②動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$)(λ>0),則△ABC的內(nèi)心一定在滿足條件的P點(diǎn)集合中;
③動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|sinB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|sinC}$)(λ>0),則△ABC的重心一定在滿足條件的P點(diǎn)集合中;
④動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)(λ>0),則△ABC的垂心一定在滿足條件的P點(diǎn)集合中;
⑤動(dòng)點(diǎn)P滿足$\overrightarrow{OP}$=$\frac{\overrightarrow{OB}+\overrightarrow{OC}}{2}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)(λ>0),則△ABC的外心一定在滿足條件的P點(diǎn)集合中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某校組織10名學(xué)生參加高校的自主招生活動(dòng),其中6名男生,4名女生,根據(jù)實(shí)際要從10名同學(xué)中選3名參加A校的自主招生,則其中恰有1名女生的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=alnx-x+$\frac{1}{x}$,g(x)=x2+x-b,y=f(x)的圖象恒過定點(diǎn)P,且P點(diǎn)既在y=g(x)的圖象上,又在y=f(x)的導(dǎo)函數(shù)的圖象上.
(1)求a,b的值;
(2)設(shè)h(x)=$\frac{f(x)}{g(x)}$,當(dāng)x>0且x≠1時(shí),判斷h(x)的符號(hào),并說明理由;
(3)求證:1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$>lnn+$\frac{n+1}{2n}$(n≥2且n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖所示是一個(gè)組合幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{16}{3}$πB.$\frac{64}{3}$C.$\frac{16π+64}{3}$D.16π+64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=sinx(x≥-3π),將f(x)的零點(diǎn)從小到大排列,得到一個(gè)數(shù)列{an}(n∈N*
(1)直接寫出{an}的通項(xiàng)公式;
(2)求{|an|}的前n項(xiàng)和Sn;
(3)設(shè)bn=$\frac{{a}_{n}}{π}$+4,證明:$\frac{1}{_{1}}$+$\frac{1}{{_{1}b}_{2}}$+$\frac{1}{{{_{1}b}_{2}b}_{3}}$+$\frac{1}{{{{_{1}b}_{2}b}_{3}b}_{4}}$+…+$\frac{1}{{{_{1}b}_{2}b}_{3}••{•b}_{2017}}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=|2x-a|(a>0),g(x)=x+2-|2x+1|.
(Ⅰ)當(dāng)a=3時(shí),求不等式f(x)≥1的解集;
(Ⅱ)若不等式f(x)<g(x)的解集為∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案