1.已知直線l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{6}t\end{array}$(t為參數(shù)),曲線C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ為參數(shù)).
(1)設(shè)l與C1相交于A,B兩點(diǎn),求|AB|;
(2)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的$\frac{1}{2}$倍,縱坐標(biāo)壓縮為原來的$\frac{{\sqrt{3}}}{2}$倍,得到曲線C2,設(shè)點(diǎn)P是曲線C2上的一個(gè)動點(diǎn),求它到直線l的距離的最大值.

分析 (1)設(shè)l與C1相交于A,B兩點(diǎn),利用普通方程,求出A,B的坐標(biāo),即可求|AB|;
(2)點(diǎn)P的坐標(biāo)是$(\frac{1}{2}cosθ,\frac{{\sqrt{3}}}{2}sinθ)$,點(diǎn)P到直線l的距離是$\frac{{|{\frac{1}{2}cosθ-\frac{3}{2}sinθ-1}|}}{2}=\frac{{|{\frac{{\sqrt{10}}}{2}sin(θ-φ)+1}|}}{2}$,即可求它到直線l的距離的最大值.

解答 解:(1)l的普通方程$y=\frac{{\sqrt{3}}}{3}(x-1)$,C1的普通方程x2+y2=1,聯(lián)立方程組$\left\{\begin{array}{l}y=\frac{{\sqrt{3}}}{3}(x-1)\\{x^2}+{y^2}=1\end{array}\right.$,
解得l與C1的交點(diǎn)為A(1,0),$B(-\frac{1}{2},-\frac{{\sqrt{3}}}{2})$,則$|{AB}|=\sqrt{3}$
(2)C2的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{1}{2}cosθ\\ y=\frac{{\sqrt{3}}}{2}sinθ\end{array}\right.$(θ為參數(shù)),故點(diǎn)P的坐標(biāo)是$(\frac{1}{2}cosθ,\frac{{\sqrt{3}}}{2}sinθ)$,
從而點(diǎn)P到直線l的距離是$\frac{{|{\frac{1}{2}cosθ-\frac{3}{2}sinθ-1}|}}{2}=\frac{{|{\frac{{\sqrt{10}}}{2}sin(θ-φ)+1}|}}{2}$,
由此當(dāng)sin(θ-φ)=1時(shí),d取得最大值,且最大值為$\frac{{\sqrt{10}}}{4}+\frac{1}{2}$.

點(diǎn)評 本題考查參數(shù)方程與普通方程的轉(zhuǎn)化,考查參數(shù)方程的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.關(guān)于復(fù)數(shù)z=$\frac{2}{-1+i}$,下列說法中正確的是( 。
A.|z|=2
B.z的虛部為-i
C.z的共軛復(fù)數(shù)$\overline{z}$位于復(fù)平面的第三象限
D.z•$\overline{z}$=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“x≥2”是“l(fā)og2x2≥2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=ax3+bx2+cx+d(a≠0)滿足f(1)+f(3)=2f(2),現(xiàn)給出如下結(jié)論:
①若f(x)是(0,1)上的增函數(shù),則f(x)是(3,4)的增函數(shù);
②若a•f(1)≥a•f(3),則f(x)有極值;
③對任意實(shí)數(shù)x0,直線y=(c-12a)(x-x0)+f(x0)與曲線y=f(x)有唯一公共點(diǎn).
其中正確結(jié)論的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若f(x)+${∫}_{0}^{1}$f(x)dx=x,則${∫}_{0}^{1}$f(x)dx=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若${x^{10}}-{x^5}={a_0}+{a_1}({x-1})+{a_2}{({x-1})^2}+…+{a_{10}}{({x-1})^{10}}$,則a5=251.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等差數(shù)列{an}中,a7+a9=16,a4=2,則a12=(  )
A.10B.14C.15D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=x2eax,a>0.
(1)證明:函數(shù)y=f(x)在(0,+∞)上為增函數(shù);
(2)若方程f(x)-1=0有且只有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}是等差數(shù)列,{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,滿足a1=b1=1,b2-a3=2b3,a3-2b2=-1
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式
(2)設(shè)cn=an+bn,n∈N*,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案