12.已知數(shù)列{an}是等比數(shù)列,數(shù)列{bn}是等差數(shù)列,且a1=b1,a2=3,a3=9,a4=b14
(Ⅰ)求{bn}通項公式;
(Ⅱ)設(shè)cn=an-bn,求數(shù)列{cn}的前n項和.

分析 (I)利用等比數(shù)列、等差數(shù)列的通項公式即可得出.
(II)利用等差數(shù)列與等比數(shù)列的求和公式即可得出.

解答 解:(Ⅰ)設(shè)等比數(shù)列{an}的公比為q,則$q=\frac{a_3}{a_2}=\frac{9}{3}=3$,
所以${a_1}=\frac{a_2}{q}=1$,a4=a3q=27,
所以${a_n}={3^{n-1}}$.…3分
設(shè)等比數(shù)列{bn}的公比為d,
因為a1=b1=1,a4=b14=27,
所以1+3d=27,即d=2,
所以bn=2n-1.…6分
(Ⅱ)由(Ⅰ)知,${a_n}={3^{n-1}}$,bn=2n-1,
所以${c_n}={a_n}-{b_n}={3^{n-1}}-2n+1$.…7分
從而數(shù)列{cn}的前n項和${S_n}=1+3+…+{3^{n-1}}-[{1+3+…+(2n-1)}]$
=$\frac{{1-{3^n}}}{1-3}-\frac{n(1+2n-1)}{2}=\frac{3^n}{2}-{n^2}-\frac{1}{2}$.…10分.

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.設(shè)i為虛數(shù)單位,復數(shù)z=(3+4i)(cosθ+isinθ),若$z∈R,θ≠kπ+\frac{π}{2}$,則tanθ的值為$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線方程是 y=$\frac{{\sqrt{5}}}{2}$x,則該雙曲線的離心率等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知動圓P與圓F1:(x+2)2+y2=49相切,且與圓F2:(x-2)2+y2=1相內(nèi)切,記圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)Q為曲線C上的一個不在x軸上的動點,O為坐標原點,過點F2作OQ的平行線交曲線C于M,N兩個不同的點,求△QMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距為$2\sqrt{5}$,且雙曲線的一條漸近線方程為x-2y=0,則雙曲線的方程為( 。
A.$\frac{x^2}{4}-{y^2}=1$B.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1C.$\frac{{3{x^2}}}{20}-\frac{{3{y^2}}}{5}=1$D.$\frac{{3{x^2}}}{5}-\frac{{3{y^2}}}{20}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在△ABC中,|$\overrightarrow{AC}$|=1,|$\overrightarrow{CA}$-$\overrightarrow{CB}$|=|$\overrightarrow{CA}$+$\overrightarrow{CB}$|,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=( 。
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π),在同一周期內(nèi),當$x=\frac{π}{12}$時,f(x)取得最大值3;當$x=\frac{7π}{12}$時,f(x)取得最小值-3.
(1)求函數(shù)f(x)的解析式和圖象的對稱中心;
(2)若$x∈[{-\frac{π}{3},\frac{π}{6}}]$時,關(guān)于x的方程2f(x)+1-m=0有且僅有一個實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知等比數(shù)列{an}中,其公比為2,則$\frac{{2{a_1}+{a_2}}}{{2{a_3}+{a_4}}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.有50件產(chǎn)品,編號從1至50,現(xiàn)從中抽5件檢驗,用系統(tǒng)抽樣的方法確定所抽的編號可能是( 。
A.6,11,16,21,26B.3,13,23,33,43C.5,15,25,36,47D.10,20,29,39,49

查看答案和解析>>

同步練習冊答案