10.已知數(shù)列{an}的前n項和Sn=$\frac{n(n+1)}{2}$,數(shù)列{bn}滿足bn=an+an+1(n∈N*).
(1)求數(shù)列{bn}的通項公式;
(2)若cn=2${\;}^{{a}_{n}}$•(bn-1)(n∈N*),求數(shù)列{cn}的前n項和Tn

分析 (1)由Sn=$\frac{n(n+1)}{2}$,可得:a1=$\frac{1×2}{2}$=1;n≥2時,an=Sn-Sn-1,即可得出.
(2)cn=${2}^{{a}_{n}}$•(bn-1)=2n•2n=n•2n+1.利用“錯位相減法”與等比數(shù)列的求和公式即可得出.

解答 解:(1)由Sn=$\frac{n(n+1)}{2}$,可得:a1=$\frac{1×2}{2}$=1;
n≥2時,an=Sn-Sn-1=$\frac{n(n+1)}{2}$-$\frac{n(n-1)}{2}$=n.n=1時也成立.
∴an=n.
∴bn=an+an+1=n+n+1=2n+1.
(2)cn=${2}^{{a}_{n}}$•(bn-1)=2n•2n=n•2n+1
∴數(shù)列{cn}的前n項和Tn=22+2×23+3×24+…+n•2n+1
2Tn=23+2×24+…+(n-1)•2n+1+n•2n+2
∴-Tn=22+23+…+2n+1-n•2n+2=$\frac{4({2}^{n}-1)}{2-1}$-n•2n+2,
∴Tn=(n-1)•2n+2+4.

點評 本題考查了“錯位相減法”與等比數(shù)列的求和公式、數(shù)列遞推 關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓E的中心在坐標(biāo)原點O,焦點在x軸上,橢圓E的短軸端點和焦點所組成的四邊形為正方形,且橢圓E上任意一點到兩個焦點的距離之和為2$\sqrt{2}$.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l:y=2x+m與橢圓E相交于M,N兩點,求△MON面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)(其中a>1,b>1),x=0是f(x)的一個零點,曲線y=f(x)在點(1,f(1))處的切線平行于x軸,則a+b的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右頂點為A(2,0),左、右焦點分別為F1、F2,過點A且斜率為$\frac{1}{2}$的直線與y軸交于點P,與橢圓交于另一個點B,且點B在x軸上的射影恰好為點F1
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點P且斜率大于$\frac{1}{2}$的直線與橢圓交于M,N兩點(|PM|>|PN|),若S△PAM:S△PBN=λ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(其中φ為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ(tanα•cosθ-sinθ)=1(α為常數(shù),0<α<π,且α≠$\frac{π}{2}$),點A,B(A在x軸下方)是曲線C1與C2的兩個不同交點.
(1)求曲線C1普通方程和C2的直角坐標(biāo)方程;
(2)求|AB|的最大值及此時點B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題“?x>1,${(\frac{1}{2})^x}<\frac{1}{2}$”的否定是( 。
A.?x>1,${(\frac{1}{2})^x}≥\frac{1}{2}$B.?x≤1,${(\frac{1}{2})^x}≥\frac{1}{2}$C.?x0>1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$D.?x0≤1,${(\frac{1}{2})^{x_0}}≥\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex(x2-2x+a)(其中a∈R,a為常數(shù),e為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)曲線y=f(x)在(a,f(a))處的切線為l,當(dāng)a∈[1,3]時,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x-y-1≤0}\\{x+y+1≥0}\end{array}\right.$,則z=$\frac{y}{x+1}$的取值范圍為(  )
A.[-1,$\frac{1}{2}$]B.(-∞,-1]∪[$\frac{1}{2}$,+∞)C.[0,$\frac{4}{3}$]D.(-∞,-2]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.為了得到函數(shù)$y=2sin(x+\frac{π}{6})cos(x+\frac{π}{6})$的圖象,只需把函數(shù)y=sin2x的圖象上所有的點( 。
A.向左平行移動$\frac{π}{12}$個單位長度B.向右平行移動$\frac{π}{12}$個單位長度
C.向左平行移動$\frac{π}{6}$個單位長度D.向右平行移動$\frac{π}{6}$個單位長度

查看答案和解析>>

同步練習(xí)冊答案