4.已知$f(x)=2sin({2x+\frac{π}{6}})$,若將它的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象,則函數(shù)g(x)圖象的一條對(duì)稱軸的方程為( 。
A.$x=\frac{π}{3}$B.$x=\frac{π}{4}$C.$x=\frac{π}{6}$D.$x=\frac{π}{12}$

分析 利用y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,再利用正弦函數(shù)的圖象的對(duì)稱性,求得函數(shù)g(x)圖象的一條對(duì)稱軸的方程.

解答 解:已知$f(x)=2sin({2x+\frac{π}{6}})$,若將它的圖象向右平移$\frac{π}{6}$個(gè)單位,
得到函數(shù)g(x)=2sin(2x-$\frac{π}{3}$+$\frac{π}{6}$)=2sin(2x-$\frac{π}{6}$)的圖象,
令2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$,可得x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,故函數(shù)g(x)圖象的一條對(duì)稱軸的方程為x=$\frac{π}{3}$,
故選:A.

點(diǎn)評(píng) 本題主要考查y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列四個(gè)命題中是真命題的是(  )
A.x>3是x>5的充分條件B.x2=1是x=1的充分條件
C.a>b是ac2>bc2的必要條件D.$α=\frac{π}{2}是sinα=1的必要條件$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A.y=-x2+1B.y=x-2C.y=log2xD.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線$ρcosθ=\frac{1}{2}$被圓ρ=1所截得的弦長(zhǎng)為( 。
A.1B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某超市從現(xiàn)有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個(gè)數(shù)據(jù)(數(shù)據(jù)均在區(qū)間(0,50]內(nèi))中,按照5%的比例進(jìn)行分層抽樣,統(tǒng)計(jì)結(jié)果按(0,10],(10,20],(20,30],(30,40],(40,50]分組,整理如下圖:

(Ⅰ)寫出頻率分布直方圖(圖乙)中a的值;記所抽取樣本中甲種酸奶與乙種酸奶日銷售量的方差分別為$s_1^2$,$s_2^2$,試比較$s_1^2$與$s_2^2$的大。ㄖ恍鑼懗鼋Y(jié)論);
(Ⅱ)從甲種酸奶日銷售量在區(qū)間(0,20]的數(shù)據(jù)樣本中抽取3個(gè),記在(0,10]內(nèi)的數(shù)據(jù)個(gè)數(shù)為X,求X的分布列;
(Ⅲ)估計(jì)1200個(gè)日銷售量數(shù)據(jù)中,數(shù)據(jù)在區(qū)間(0,10]中的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A,B,C的對(duì)邊分別是a、b、c,已知$\overrightarrow a=({cosA,cosB})$,$\overrightarrow b=({a,2c-b})$,且$\overrightarrow a∥\overrightarrow b$.
(Ⅰ)求角A的大;
(Ⅱ)若b=3,△ABC的面積${S_{△ABC}}=3\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=|x|+{2^x}-\frac{1}{2}({x<0})$與g(x)=|x|+log2(x+a)的圖象上存在關(guān)于y軸對(duì)稱的點(diǎn),則a的取值范圍是( 。
A.$({-∞,-\sqrt{2}})$B.$({-∞,\sqrt{2}})$C.$({-∞,2\sqrt{2}})$D.$({-2\sqrt{2},\frac{{\sqrt{2}}}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=$\sqrt{3}sinxcosx+{sin^2}$x.
(1)當(dāng)$x∈[{0,\frac{π}{2}}]$時(shí),求f(x)的最大值;
(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,$f({\frac{C}{2}})=1$,且C為銳角,c=$\sqrt{3}$,求a-b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n,都有3an=2Sn+3成立.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案