12.已知:f(x)=x2+2f′(1)x,若f(x)>0,則x的取值范圍(-∞,0)∪(4,+∞).

分析 根據(jù)題意,對(duì)函數(shù)f(x)求導(dǎo)可得f′(x)=2x+2f′(1),令x=1可得,f′(1)=2+2f′(1),解可得f′(1)的值,解可得函數(shù)f(x)的解析式f(x)=x2-4x,不等式f(x)>0,即x2-4x>0,解可得x的取值范圍,即可得答案.

解答 解:根據(jù)題意,對(duì)于函數(shù)f(x)=x2+2f′(1)x,
則其導(dǎo)數(shù)f′(x)=2x+2f′(1),
令x=1可得,則f′(1)=2+2f′(1),解可得f′(1)=-2,
則f(x)=x2-4x,
若f(x)>0,即x2-4x>0,
解可得x<0或x>4,
即x的取值范圍是(-∞,0)∪(4,+∞),
故答案為:(-∞,0)∪(4,+∞).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的計(jì)算,一元二次不等式的解法,關(guān)鍵是求出f′(1)的值,確定函數(shù)的解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=alnx+x-1(a∈R).若f(x)≥0對(duì)于任意x∈[1,+∞)恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1]B.[-1,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)是以π為周期的奇函數(shù),且當(dāng)$x∈[{-\frac{π}{2}\;,\;0})$時(shí),f(x)=cosx,則$f({-\frac{5π}{3}})$=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)函數(shù)f(x)=a(x+1)2ln(x+1)+bx(a,b∈R),曲線y=f(x)過點(diǎn)(e-1,e2-e+1)(e是自然對(duì)數(shù)的底數(shù)),且在點(diǎn)(0,0)處的切線方程為y=0.
(1)求a,b的值;
(2)證明:當(dāng)x≥0時(shí),f(x)≥x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在等差數(shù)列{an}中,a5=11,a8=5,求通項(xiàng)公式an和前10項(xiàng)的和S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=lnx-ax+$\frac{1-a}{x}$-1(0<a<1)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=$\frac{1}{3}$時(shí),設(shè)函數(shù)g(x)=x2-2bx-$\frac{5}{9}$,若對(duì)于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)A,B為兩事件,已知P(A)=0.5,P(B)=0.6,試求:
(1)P(AB)
(2)P(A∪B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長,設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如表:
年份20122013201420152016
時(shí)間代號(hào)t12345
儲(chǔ)蓄存款y(千億元)567811
(1)求y關(guān)于t的回歸方程$\widehaty=\widehatb•t+\widehata$;
(2)用所求回歸方程預(yù)測該地區(qū)2017年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸方程$\widehaty=\widehatb•t+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{{t_i}{y_i}-n\overline t\overline y}}}{{\sum_{i=1}^n{{t_i}^2-n\overline{t^2}}}},\widehata=\overline y-\widehatb\overline t$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.用反證法證明命題:“已知a、b是自然數(shù),若a+b≥3,則a、b中至少有一個(gè)不小于2”提出的假設(shè)應(yīng)該是( 。
A.a、b都小于2B.a、b至少有一個(gè)不小于2
C.a、b至少有兩個(gè)不小于2D.a、b至少有一個(gè)小于2

查看答案和解析>>

同步練習(xí)冊答案