2.已知函數(shù)f(x)=alnx+x-1(a∈R).若f(x)≥0對于任意x∈[1,+∞)恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1]B.[-1,+∞)C.(-∞,1]D.[1,+∞)

分析 求出函數(shù)f(x)的導(dǎo)數(shù),通過討論a的范圍,結(jié)合函數(shù)的單調(diào)性確定a的具體范圍即可.

解答 解:由題意知alnx+x-1≥0在x∈[1,+∞)恒成立,
∵f′(x)=$\frac{a}{x}$+1=$\frac{x+a}{x}$,x∈[1,+∞),
當(dāng)a≥-1時,f′(x)≥0,f(x)在[1,+∞)上單調(diào)遞增,
∴f(x)≥f(1)=0,符合題意; 
當(dāng)a<-1時,若1<x<-a,則f′(x)<0,
f(x)在(1,-a)上單調(diào)遞減;
∴存在x0∈(1,-a),使得f(x)<f(1)=0,
不符合題意.
綜上a≥-1,
故選:B.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦點(diǎn)F(c,0)作圓x2+y2=a2的切線,切點(diǎn)為M.直線FM交拋物線y2=-4cx于點(diǎn)N,若$\overrightarrow{OF}+\overrightarrow{ON}=2\overrightarrow{OM}$(O為坐標(biāo)原點(diǎn)),則雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\sqrt{5}$D.$1+\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知F為雙曲線$\frac{x^2}{3a}-\frac{y^2}{a}=1({a>0})$的一個焦點(diǎn),則點(diǎn)F到C的一條漸近線的距離為(  )
A.$\sqrt{a}$B.aC.$\sqrt{3}a$D.3a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,a,b,c分別為角A,B,C的對邊,
(1)若A,B,C成等差數(shù)列,求cosA+cosC的取值范圍;
(2)若a,b,c成等比數(shù)列,且cosB=$\frac{4}{5}$,求$\frac{1}{tanA}$+$\frac{1}{tanC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)集合A={x|-1<x<2},B={x|y=lg(x-1)},則A∩(∁RB)=( 。
A.[-1,2)B.[2,+∞)C.(-1,1]D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=asin(2x-\frac{π}{3})$,且$f(\frac{π}{2})=\sqrt{3}$
(1)求函數(shù)f(x)的最大值以及取得最大值時相應(yīng)的自變量x的值;
(2)求f(x)的最小正周期及單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)P(4,-3)是角α終邊上一點(diǎn),則下列三角函數(shù)值中正確的是( 。
A.tanα=-$\frac{4}{3}$B.tanα=-$\frac{3}{4}$C.sinα=-$\frac{4}{5}$D.cosα=$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)y=$\frac{1}{2}$cosx(0≤x≤π)的圖象和直線y=2、直線x=π、y軸圍成一個封閉的平面圖形,則這個封閉圖形的面積是2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知:f(x)=x2+2f′(1)x,若f(x)>0,則x的取值范圍(-∞,0)∪(4,+∞).

查看答案和解析>>

同步練習(xí)冊答案