15.某同學在研究三角形的性質(zhì)時,發(fā)現(xiàn)了有些三角形的三邊長有以下規(guī)律:
①3(3×4+4×5+5×3)≤(3+4+5)2<4(3×4+4×5+5×3);
②3(6×8+8×9+9×6)≤(6+8+9)2<4(6×8+8×9+9×6);
③3(3×4+4×6+6×3)≤(3+4+6)2<4(3×4+4×6+6×3).
分析以上各式的共同特征,試猜想出關(guān)于任一三角形三邊長a,b,c的一般性的不等式結(jié)論,并加以證明.

分析 根據(jù)三個不等式猜測三角形三邊長a,b,c的一般性的不等式結(jié)論:3(ab+ac+bc)≤(a+b+c)2<4(ab+ac+bc);
然后利用比較法證明即可.

解答 解:由已知規(guī)律:
①3(3×4+4×5+5×3)≤(3+4+5)2<4(3×4+4×5+5×3);
②3(6×8+8×9+9×6)≤(6+8+9)2<4(6×8+8×9+9×6);
③3(3×4+4×6+6×3)≤(3+4+6)2<4(3×4+4×6+6×3).
根據(jù)以上各式的共同特征,猜想出關(guān)于任一三角形三邊長a,b,c的一般性的不等式結(jié)論:3(ab+ac+bc)≤(a+b+c)2<4(ab+ac+bc);
證明:(a+b+c)2-3(ab+ac+bc)=a2+b2+c2+2ab+2ac+2bc-3ab-3ac-3bc=a2+b2+c2-ab-ac-bc=$\frac{1}{2}(a-b)^{2}+\frac{1}{2}(a-c)^{2}+\frac{1}{2}(b-c)^{2}≥0$,
所以3(ab+ac+bc)≤(a+b+c)2;
(a+b+c)2-4(ab+ac+bc)=a2+b2+c2+2ab+2ac+2bc-4ab-4ac-4bc=a2+b2+c2-2ab-2ac-2bc=(a-b-c)2≥0.
所以(a+b+c)2<4(ab+ac+bc);
所以3(ab+ac+bc)≤(a+b+c)2<4(ab+ac+bc).

點評 本題考查了三角形三邊關(guān)系;利用比較法證明猜測成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=sinx-2x,且a=f(ln$\frac{3}{2}$),b=f(log2$\frac{1}{3}$),c=f(20.3),則( 。
A.c>a>bB.a>c>bC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.一種放射性元素的質(zhì)量按每年10%衰減,這種放射性元素的半衰期(剩留量為最初質(zhì)量的一半所需的時間叫做半衰期)是( 。┠辏ň_到0.1,已知lg2=0.3010,lg3=0.4771).
A.5.2B.6.6C.7.1D.8.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.將函數(shù)y=sinx的圖象向左平移$\frac{π}{4}$個單位,再向上平移2個單位,則所得的圖象的函數(shù)解析式是$y=sin(x+\frac{π}{4})+2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知等比數(shù)列{an}的公比為正數(shù),且a1=2,4a2•a8=a42,則a3=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.如圖所示將若干個點擺成三角形圖案,每條邊(包括兩個端點)有n(n>1,n∈N*)個點,相應(yīng)的圖案中總的點數(shù)記為an,則$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2015}{a}_{2016}}$=( 。
A.$\frac{2012}{2013}$B.$\frac{2013}{2012}$C.$\frac{2014}{2015}$D.$\frac{2014}{2013}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)的解析式為f(x)=$\left\{\begin{array}{l}{2-x,0≤x<2}\\{1-lo{g}_{2}x,x≥2}\end{array}\right.$,若不等式f(2a-1)-f(a+2)≥0成立,則實數(shù)a的取值范圍是[-$\frac{1}{3}$,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)命題p:?x∈R,f(x)•g(x)≠0,則¬p為( 。
A.?x0∈R,f(x0)=0或g(x0)=0B.?x0∈R,f(x0)=0且g(x0)=0
C.?x∈R,f(x)=0或g(x)=0D.?x∈R,f(x)=0且g(x)=0

查看答案和解析>>

同步練習冊答案