8.在空間四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點,若AC=BD=2,且AC與BD成 60°,則四邊形EFGH的面積為( 。
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}}}{8}$D.$\frac{{\sqrt{3}}}{2}$

分析 如圖所示,由E、F、G、H分別是AB、BC、CD、DA的中點,利用三角形中位線定理可得四邊形EFGH是平行四邊形,同理可得$EF=GH=\frac{1}{2}$AC,可得四邊形EFGH是菱形.根據(jù)AC與BD成 60°,可得∠FEH=60°或120°.可得四邊形EFGH的面積.

解答 解:如圖所示,
∵E、F、G、H分別是AB、BC、CD、DA的中點,
∴EH∥FG∥BD,EH=FH=$\frac{1}{2}$AC=1.
∴四邊形EFGH是平行四邊形,
同理可得$EF=GH=\frac{1}{2}$AC=1,
∴四邊形EFGH是菱形.
∵AC與BD成 60°,∴∠FEH=60°或120°
∴四邊形EFGH的面積=$\frac{1}{2}E{F}^{2}sin6{0}^{°}$=$\frac{\sqrt{3}}{4}$.
故選:B.

點評 本題考查了三角形中位線定理、平行四邊形與菱形定義、異面直線所成的角,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=4x2-kx-8在[5,20]上是單調(diào)遞減函數(shù),則實數(shù)k的取值范圍是( 。
A.(-∞,40]B.[160,+∞)C.[40,160]D.(-∞,40]∪[160,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知圓C:x2+y2-8y+12=0,直線l:ax+y+2a=0.
(1)當a為何值時,直線l與圓C相切;
(2)若直線l過點(0,2)與圓C相交于點A、B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=4x+a•2x+b,
(1)若f(0)=1,f(-1)=-$\frac{5}{4}$,求f(x)的解析式;
(2)由(1)當0≤x≤2時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知拋物線C:y2=4x.點P是其準線與x軸的交點,過點P的直線L與拋物線C交于A,B兩點.
(1)當線段AB的中點在直線x=7上,求直線L的方程;
(2)設(shè)F為拋物線C的焦點,當A為線段PB的中點時,求△FAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知方程$\frac{x^2}{k-3}+\frac{y^2}{2-k}=1$表示焦點在y軸上的雙曲線,則k的取值范圍為k<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)$f(x)=2{cos^2}(x-\frac{π}{4})-\sqrt{3}$cos2x+1,
(1)求f(x)的圖象的對稱軸方程;
(2)求f(x)在$[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值;
(3)若對任意實數(shù)x,不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.數(shù)據(jù)0.7,1,0.8,0.9,1.1的方差是0.02.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,已知AD是△ABC內(nèi)角∠BAC的角平分線.
(1)用正弦定理證明:$\frac{AB}{AC}=\frac{DB}{DC}$;
(2)若∠BAC=120°,AB=2,AC=1,求AD的長.

查看答案和解析>>

同步練習冊答案