分析 (1)化簡f(x)的解析式,求出函數(shù)的對(duì)稱軸即可;
(2)降冪后利用兩角差的正弦函數(shù)化積,然后利用x的取值范圍求得函數(shù)的最大值和最小值;
(3)不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,轉(zhuǎn)化為m-2<f(x)<m+2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,進(jìn)一步轉(zhuǎn)化為m-2,m+2與函數(shù)f(x)在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上的最值的關(guān)系,列不等式后求得實(shí)數(shù)m的取值范圍.
解答 解:(1)f(x)=2cos2(x-$\frac{π}{4}$)-$\sqrt{3}$cos2x+1
=cos(2x-$\frac{π}{2}$)-$\sqrt{3}$cos2x+2=sin2x-$\sqrt{3}$cos2x+2=2sin(2x-$\frac{π}{3}$)+2,
對(duì)稱軸方程是$x=\frac{k}{2}π+\frac{5}{12}π(k∈Z)$;
(2)由(1)得:f(x)=2sin(2x-$\frac{π}{3}$)+2.
∵x∈[$\frac{π}{4}$,$\frac{π}{2}$],∴2x-$\frac{π}{3}$∈[$\frac{π}{6}$,$\frac{2π}{3}$],
∴當(dāng)2x-$\frac{π}{3}$=$\frac{π}{6}$,即x=$\frac{π}{4}$時(shí),fmin(x)=3.
當(dāng)2x-$\frac{π}{3}$=$\frac{π}{2}$,即x=$\frac{5π}{12}$時(shí),fmax(x)=4;
(3)|f(x)-m|<2?m-2<f(x)<m+2,
∵對(duì)任意實(shí)數(shù)x,不等式|f(x)-m|<2在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,
∴$\left\{\begin{array}{l}{m-2{<f(x)}_{min}}\\{m+2{>f(x)}_{max}}\end{array}\right.$,即 $\left\{\begin{array}{l}{m-2<3}\\{m+2>4}\end{array}\right.$,解得:2<m<5.
故m的取值范圍為(2,5).
點(diǎn)評(píng) 本題考查了三角函數(shù)倍角公式,兩角差的正弦公式,考查了三角函數(shù)最值的求法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,關(guān)鍵是把不等式恒成立問題轉(zhuǎn)化為含m的代數(shù)式與f(x)的最值關(guān)系問題,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ac>bc | B. | -a>-b | C. | c-a<c-b | D. | $\sqrt{a}>\sqrt$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{4}$ | C. | $\frac{{\sqrt{3}}}{8}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | l∥α,α⊥β⇒l⊥α | B. | l⊥α,α⊥β⇒l∥α | C. | l∥α,α∥β⇒l∥β | D. | l⊥α,α∥β⇒l⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+$\frac{y^2}{2}$=1 | B. | $\frac{x^2}{2}$+y2=1 | C. | x2+$\frac{y^2}{4}$=1 | D. | $\frac{x^2}{4}$+y2=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{a}$<$\frac{a}$ | B. | $\frac{1}{a^{2}}$<$\frac{1}{{a}^{2}b}$ | C. | a2<b2 | D. | ab2<a2b |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com