6.當(dāng)x>1時,不等式x+$\frac{1}{x-1}$≥a恒成立,則實數(shù)a的取值范圍是(-∞,3].

分析 依題意知,a≤(x+$\frac{1}{x-1}$)min(x>1),利用基本不等式可求得x+$\frac{1}{x-1}$=(x-1)+$\frac{1}{x-1}$+1≥2$\sqrt{(x-1)•\frac{1}{x-1}}$+1=3,從而可得實數(shù)a的取值范圍.

解答 解:因為當(dāng)x>1時,不等式x+$\frac{1}{x-1}$≥a恒成立,
所以,a≤(x+$\frac{1}{x-1}$)min(x>1),
因為x>1時,x-1>0,
所以x+$\frac{1}{x-1}$=(x-1)+$\frac{1}{x-1}$+1≥2$\sqrt{(x-1)•\frac{1}{x-1}}$+1=3(當(dāng)且僅當(dāng)x-1=$\frac{1}{x-1}$,即x=2時取“=”),
所以,(x+$\frac{1}{x-1}$)min=3,
故a≤3,
故答案為:(-∞,3].

點評 本題考查函數(shù)恒成立問題,考查等價轉(zhuǎn)化思想與基本不等式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.$\int_{-1}^1{(xcosx+\root{3}{x^2})dx}$的值為( 。
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{5}{4}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.類比平面內(nèi)三角形“三邊垂直平分線的交點是三角形外接圓圓心”的性質(zhì),可推知四面體的下列性質(zhì)( 。
A.過四面體各面的垂心分別與各面垂直的直線交點為四面體外接球球心
B.過四面體各面的內(nèi)心分別與各面垂直的直線交點為四面體外接球球心
C.過四面體各面的重心分別與各面垂直的直線交點為四面體外接球球心
D.過四面體各面的外心分別與各面垂直的直線交點為四面體外接球球心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}滿足a1=3,an+1an+an+1-an+1=0,n∈N*,則a2016=( 。
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=$\sqrt{4x-3}$,則f(x)的導(dǎo)函數(shù)f′(x)=$\frac{{2\sqrt{4x-3}}}{4x-3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.己知圖1中,四邊形ABCD是等腰梯形,AB∥CD,EF∥CD,O、Q分別為線段AB,CD的中點,OQ與EF的交點為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得OQ=$\sqrt{3}$,連結(jié)AD,BC,得一幾何體如圖2示.

(I)證明:平面ABCD⊥平面ABFE;
(II)若圖1中.∠A=45°,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知關(guān)于x的不等式ax2-3x+2≤0的解集為{x|1≤x≤b}.
(1)求實數(shù)a,b的值;
(2)解關(guān)于x的不等式:$\frac{x+3}{ax-b}$>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=tanx-1的定義域為$\left\{{x\left|{x≠\frac{π}{2}+kπ,k∈z}\right.}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z滿足(3+4i)z=25,則z對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案