1.若函數(shù)f(x)=$\sqrt{4x-3}$,則f(x)的導(dǎo)函數(shù)f′(x)=$\frac{{2\sqrt{4x-3}}}{4x-3}$.

分析 根據(jù)導(dǎo)數(shù)的運算法則和復(fù)合函數(shù)的求導(dǎo)法則求導(dǎo)即可.

解答 解:f(x)=$\sqrt{4x-3}$=(4x-3)${\;}^{\frac{1}{2}}$,
∴f′(x)=$\frac{1}{2}$(4x-3)${\;}^{-\frac{1}{2}}$•(4x-3)′=$\frac{2\sqrt{4x-3}}{4x-3}$,
故答案為:$\frac{{2\sqrt{4x-3}}}{4x-3}$

點評 本題考查了導(dǎo)數(shù)的運算法則和復(fù)合函數(shù)的求導(dǎo)法則,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)[x]表示不超過實數(shù)x的最大整數(shù),例如:[4.3]=4,[-2.6]=-3,則點集{(x,y)|[x]2+[y]2=25}所覆蓋的面積為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知“三段論”中的三段:
①$y=2sin\frac{1}{2}x+cos\frac{1}{2}x$可化為y=Acos(ωx+φ);
②y=Acos(ωx+φ)是周期函數(shù);
③$y=2sin\frac{1}{2}x+cos\frac{1}{2}x$是周期函數(shù),
其中為小前提的是( 。
A.B.C.D.①和②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a,b∈R,i是虛數(shù)單位,則“$a=\sqrt{3}$,b=1”是“$|{\frac{1+bi}{a+i}}|=\frac{{\sqrt{2}}}{2}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.雙曲線$\frac{x^2}{2}-\frac{y^2}{4}=1$的頂點到其漸近線的距離等于$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.當(dāng)x>1時,不等式x+$\frac{1}{x-1}$≥a恒成立,則實數(shù)a的取值范圍是(-∞,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在直角坐標(biāo)系xOy中,已知直線l1:y=tanα•x(0≤a<π,α$≠\frac{π}{2}$),拋物線C:$\left\{\begin{array}{l}{x={t}^{2}}\\{y=-2t}\end{array}\right.$(t為參數(shù)).以原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系
(Ⅰ)求直線l1和拋物線C的極坐標(biāo)方程;
(Ⅱ)若直線l1和拋物線C相交于點A(異于原點O),過原點作與l1垂直的直線l2,l2和拋物線C相交于點B(異于原點O),求△OAB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=xlnx+3x-2,射線l:y=kx-k(x≥1).若射線l恒在函數(shù)y=f(x)圖象的下方,則整數(shù)k的最大值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)A(x1,y1),B(x2,y2)是函數(shù)$f(x)=\frac{1}{2}+{log_2}\frac{x}{1-x}$的圖象上任意兩點,且$\overrightarrow{OM}=\frac{1}{2}({\overrightarrow{OA}+\overrightarrow{OB}})$,已知點M的橫坐標(biāo)為$\frac{1}{2}$,則M點的縱坐標(biāo)為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案