如圖,在△ABC中,AB=3,BC=5,∠ABC=120°將△ABC繞直線AB旋轉(zhuǎn)一周,則所形成的旋轉(zhuǎn)體的側(cè)面積是
 
考點:旋轉(zhuǎn)體(圓柱、圓錐、圓臺)
專題:計算題,空間位置關(guān)系與距離
分析:在△ABC中,由余弦定理,得AC=7,過點C作CO⊥AB,垂足為O,所形成的旋轉(zhuǎn)體的表面積S為圓錐AO和圓錐BO的側(cè)面積之和.
解答: 解:在△ABC中,
∵△ABC中,AB=3,BC=5,∠ABC=120°,
∴由余弦定理,得AC=7,
過點C作CO⊥AB,垂足為O,
則OC=BCsin60°=
5
3
2
,
由圖知,所形成的旋轉(zhuǎn)體的表面積S為圓錐AO和圓錐BO的側(cè)面積之和.
∴S=π×OC×(BC+AC)=30
3
π

故答案為:30
3
π
點評:本題考查旋轉(zhuǎn)體的側(cè)面積的求法,解題時要認真審題,仔細解答,注意余弦定理的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)=
x-1
x+1
的定義域為A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定義域為B,求
(1)A,B;
(2)若B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是△ABC所在平面內(nèi)一點,則
PA
+
PB
+
PC
=
AB
是點P在線段AC上的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某高校在2013年的自主招生考試成績中隨機抽取40名學生的筆試成績,按成績共分成五組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100],得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上(含85分)的學生為“優(yōu)秀”,成績小于85分的學生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學生才能獲得面試資格.
(1)求出第4組的頻率;
(2)如果用分層抽樣的方法從“優(yōu)秀”和“良好”的學生中選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、20+12
2
B、20+24
2
C、20+12
5
D、56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=(
3
5
)-
1
3
,b=(
3
5
)-
1
2
,c=(
4
3
)-
1
2
,則a,b,c三個數(shù)的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=loga
1+x
1-x
(a>0,a≠1)

(Ⅰ)求f(x)的定義域;             
(Ⅱ)判斷f(x)的奇偶性并予以證明;
(Ⅲ)寫出f(x)的單調(diào)區(qū)間.(不必證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+a(x2-x)
(1)若a=-1,求證f(x)有且僅有一個零點;
(2)若對于x∈[1,2],函數(shù)f(x)圖象上任意一點處的切線的傾斜角都不大于
π
4
,求實數(shù)a的取值范圍;
(3)若f(x)存在單調(diào)遞減區(qū)間,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},{bn}中,對任意n∈N*都有:a1b1+a2b2+a3b3+…+an-1bn-1+anbn=(n-1)•2n+1.
(1)若數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是否為等比數(shù)列?若是,請求出通項公式,若不是,請說明理由;
(2)求證:
n
i=1
1
a ibi
3
2

查看答案和解析>>

同步練習冊答案