15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-(4a+1)x-8a+4,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$,若a=$\frac{1}{2}$,則函數(shù)f(x)的值域?yàn)镽;若函數(shù)f(x)是R上的減函數(shù),求實(shí)數(shù)a的取值范圍為[$\frac{1}{4}$,$\frac{1}{3}$].

分析 由題意利用函數(shù)的單調(diào)性的性質(zhì),對(duì)數(shù)函數(shù)、二次函數(shù)的單調(diào)性,可得$\left\{\begin{array}{l}{\frac{4a+1}{2}≥1}\\{0<a<1}\\{1-(4a+1)-8a+4≥0}\end{array}\right.$,由此求得實(shí)數(shù)a的取值范圍.

解答 解:若a=$\frac{1}{2}$,當(dāng)x<1時(shí),函數(shù)f(x)=x2-3x=${(x-\frac{3}{2})}^{2}$-$\frac{9}{4}$∈[-2,+∞);
當(dāng)x≥1時(shí),f(x)=${log}_{\frac{1}{2}}x$≤0,故函數(shù)f(x)的值域?yàn)閇-2,+∞)∪(-∞,0]=R.
若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-(4a+1)x-8a+4,x<1}\\{lo{g}_{a}x,x≥1}\end{array}\right.$在R上單調(diào)遞減,則$\left\{\begin{array}{l}{\frac{4a+1}{2}≥1}\\{0<a<1}\\{1-(4a+1)-8a+4≥0}\end{array}\right.$,
求得$\frac{1}{4}$≤a≤$\frac{1}{3}$,
故答案為:R;[$\frac{1}{4}$,$\frac{1}{3}$].

點(diǎn)評(píng) 本題主要考查函數(shù)的單調(diào)性的性質(zhì),對(duì)數(shù)函數(shù)、二次函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線L:y=x+m與拋物線y2=8x交于A、B兩點(diǎn)(異于原點(diǎn)),
(1)若直線L過拋物線焦點(diǎn),求線段|AB|的長(zhǎng)度;
(2)若OA⊥OB,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知雙曲線的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,焦距為6,離心率為3,求雙曲線的標(biāo)準(zhǔn)方程;
(2)已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸是x軸,且焦點(diǎn)到準(zhǔn)線的距離為1,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)=1-ex的圖象與x軸相交于點(diǎn)P,則曲線在點(diǎn)P處的切線的方程為( 。
A.y=-e•x+1B.y=-x+1C.y=-xD.y=-e•x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)y=f(x)的圖象如圖所示,則函數(shù)f(x)的解析式可以為( 。
A.f(x)=$\frac{{2}^{x}+1}{x}$B.f(x)=$\frac{ln({x}^{2}+2)}{x}$C.f(x)=$\frac{{x}^{3}+3}{x}$D.f(x)=$\frac{lnx}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|m-1≤x≤2m+3},函數(shù)f(x)=lg(-x2+2x+8)的定義域?yàn)锽.
(1)當(dāng)m=2時(shí),求A∪B、(∁RA)∩B;
(2)若A∩B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知四棱錐P-ABCD的底面為菱形,∠BAD=60°,側(cè)面PAD為正三角形,且平面PAD⊥平面ABCD,則下列說法中錯(cuò)誤的是(  )
A.異面直線PA與BC的夾角為60°B.若M為AD的中點(diǎn),則AD⊥平面PMB
C.二面角P-BC-A的大小為45°D.BD⊥平面PAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={1,2,3,4},B={x|y=2x,y∈A},則A∩B=( 。
A.{2}B.{1,2}C.{2,4}D.{1,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.斜率為$\sqrt{3}$的直線l經(jīng)過拋物線y2=2px(p>0)的焦點(diǎn)F,且交拋物線于A,B兩點(diǎn),若AB中點(diǎn)到拋物線準(zhǔn)線的距離為4,則p的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案