11.設(shè)函數(shù)f(x)=(x+a)ex,已知曲線y=f(x)在點(1,f(1))處切線與直線ex-y=0平行.
(1)求a的值;
(2)求y=f(x)的單調(diào)區(qū)間.

分析 (1)根據(jù)兩直線平行的條件,求出曲線y=f(x)在點(1,f(1))處切線的斜率k,求出函數(shù)f(x)的導(dǎo)函數(shù)f′(x),令x=1,f′(1)=k,求出a;
(2)將(1)中的a代入原式,求出f(x)的導(dǎo)函數(shù)f′(x),令f′(x)>0,得出y=f(x)的單調(diào)增區(qū)間,令f′(x)<0,得出y=f(x)的單調(diào)減區(qū)間.

解答 解:(1)∵曲線y=f(x)在點(1,f(1))處切線與直線ex-y=0平行,
直線ex-y=0的斜率為e,
∴曲線y=f(x)在點(1,f(1))處切線的斜率為k=e.
∵函數(shù)f(x)=(x+a)ex的導(dǎo)函數(shù)為f′(x)=ex(1+x+a),
令x=1,∴f′(1)=k=e,即e(2+a)=e,
解得a=-1;
(2)f(x)=(x-1)ex,
∴f′(x)=ex•x,
令f′(x)>0,解得x>0;令f′(x)<0,解得x<0,
∴y=f(x)的單調(diào)減區(qū)間為(-∞,0),單調(diào)增區(qū)間為(0,+∞).

點評 本題考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知正方體ABCD-A1B1C1D1,則過點A與AB、BC、CC1所成角均相等的直線有( 。
A.1條B.2條C.4條D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{2x-a,x≥1}\\{{e^x},x≤-1}\end{array}}$的圖象上存在關(guān)于y軸的對稱點,則a的取值范圍是(  )
A.(-∞,$\frac{1}{e}$-1)B.(-∞,2-$\frac{1}{e}$)C.[$\frac{1}{e}$-1,+∞)D.[2-$\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=ex+x2-x在區(qū)間[-1,1]上的值域為[1,e].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)拋物線y2=2px(p>0)的焦點為F、準(zhǔn)線為l,過拋物線上一點A作l的垂線,垂足為B,設(shè)C($\frac{5}{2}$p,0),AF與BC相交于點E,若|CF|=2|AF|,且△ACE的面積為3,則p的值是( 。
A.3B.3$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下面給出了四個類比推理:
(1)由“若a,b,c∈R則(ab)c=a(bc)”類比推出“若$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為三個向量則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)”
(2)“在平面內(nèi),三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個面的面積之和大于第四個面的面積”
(3)“a,b為實數(shù),若a2+b2=0則a=b=0”類比推出“z1,z2為復(fù)數(shù),若z${\;}_{1}^{2}$+z${\;}_{2}^{2}$=0則z1=z2=0”;
(4)“在平面內(nèi),過不在同一條直線上的三個點有且只有一個圓”類比推出“在空間中,過不在同一個平面上的四個點有且只有一個球”
上述四個推理中,結(jié)論正確的序號是( 。
A.(2)(4)B.(1)(2)(4)C.(2)(3)D.(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個多面體的直觀圖、三視圖如圖所示,則該多面體的表面積為(  )
A.3a2B.5a2C.$\frac{9}{2}$a2D.$\frac{11}{2}$a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=$\frac{1}{\sqrt{4-{x}^{2}}}$+lnx的定義域為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知某個幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個幾何體的側(cè)面積為( 。
A.B.C.12πD.16π

查看答案和解析>>

同步練習(xí)冊答案