分析 (1)利用等差數(shù)列的通項公式與性質(zhì)即可得出.
(2)利用等比數(shù)列的定義通項公式與求和公式即可得出.
解答 解:(1)∵數(shù)列{an}為等差數(shù)列,a3+a6=-$\frac{1}{3}$=a1a8,a1a8=-$\frac{4}{3}$且a1>a8.
解得:a1=1,a8=-$\frac{4}{3}$,公差d=$\frac{{a}_{8}-{a}_{1}}{7}$=-$\frac{1}{3}$.
∴an=1-$\frac{1}{3}$(n-1)=-$\frac{1}{3}$n+$\frac{4}{3}$.
(2)b1=a1=1,b2=a4=0,
∴bn=a3n-2=-$\frac{1}{3}(3n-2)$+$\frac{4}{3}$=-n+2,
∴$\frac{{2}^{_{n+1}}}{{2}^{_{n}}}$=$\frac{{2}^{-(n+1)+2}}{{2}^{-n+2}}$=$\frac{1}{2}$,
∴$\{{2}^{_{n}}\}$是首項為2,公比為$\frac{1}{2}$的等比數(shù)列,
∴$\{{2}^{_{n}}\}$的所有項的和為$\frac{2}{1-\frac{1}{2}}$=4.
點評 本題考查了等差數(shù)列與等比數(shù)列的定義通項公式性質(zhì)與求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -e | B. | -1 | C. | 1 | D. | e |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com