分析 根據(jù)題意,分析可得$S(n)=\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+…+\frac{1}{n^2}(n∈{{N}^*})$中,右邊各個式子分子為1,分母從n開始遞增到n2為止,將n=2代入即可得答案.
解答 解:根據(jù)題意,設(shè)$S(n)=\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+…+\frac{1}{n^2}(n∈{{N}^*})$,
分析可得等式的右邊各個式子分子為1,分母從n開始遞增到n2為止,
則當(dāng)n=2時,S(2)=$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$;
故答案為:$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$.
點評 本題考查合情推理的運用,關(guān)鍵是明確$S(n)=\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+…+\frac{1}{n^2}(n∈{{N}^*})$的意義.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 12 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (20,25] | B. | (30,57] | C. | (30,32] | D. | (28,57] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{OM}=\frac{1}{2}\overrightarrow{OA}-\overrightarrow{OB}+\overrightarrow{OC}$ | B. | $\overrightarrow{OM}=\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}-\overrightarrow{OC}$ | C. | $\overrightarrow{OM}=\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\overrightarrow{OC}$ | D. | $\overrightarrow{OM}=\frac{1}{2}\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}+\overrightarrow{OC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 23 | C. | 9或23 | D. | $16-\sqrt{7}或16+\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com