A. | $\frac{a+b}$=$\frac{c+d}{c}$ | B. | $\frac{a+c}{c}$=$\frac{b+d}endgdks$ | C. | $\frac{a-c}{c}$=$\frac{b-d}$ | D. | $\frac{a-c}{a}$=$\frac{b-d}ujwoqhj$ |
分析 令$\frac{a}$=$\frac{c}3zmipx8$=k⇒a=kb,c=kd,
對(duì)于A,$\frac{a+b}=\frac{kb+b}=k+1,\frac{c+d}{c}=\frac{kd+d}{kd}=\frac{k+1}{k}$;對(duì)于B,$\frac{a+c}{c}=\frac{kb+kd}{xd}=\frac{b+d}8re2y7j$;對(duì)于C,$\frac{a-c}{c}=\frac{kb-kd}{kd}=\frac{b-d}ud77yfb$;對(duì)于D,$\frac{a-c}{a}=\frac{kb-kd}{kb}=\frac{b-d}$.
解答 解:令$\frac{a}$=$\frac{c}l7dlok8$=k⇒a=kb,c=kd,
對(duì)于A,$\frac{a+b}=\frac{kb+b}=k+1,\frac{c+d}{c}=\frac{kd+d}{kd}=\frac{k+1}{k}$,故A錯(cuò);
對(duì)于B,$\frac{a+c}{c}=\frac{kb+kd}{xd}=\frac{b+d}hltqr77$故B正確;
對(duì)于C,$\frac{a-c}{c}=\frac{kb-kd}{kd}=\frac{b-d}y7i23su$,故錯(cuò);對(duì)于D,$\frac{a-c}{a}=\frac{kb-kd}{kb}=\frac{b-d}$,故錯(cuò).
故選:B.
點(diǎn)評(píng) 本題考查了比例式的性質(zhì),找中間量是關(guān)鍵,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{10}}}{5}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $-\frac{{\sqrt{10}}}{10}$ | D. | $\frac{{\sqrt{10}}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果m?α,n?α,m、n是不在任何同一個(gè)平面內(nèi)的直線,那么n∥α | |
B. | 如果m?α,n?α,m、n是不在任何同一個(gè)平面內(nèi)的直線,那么n與α相交 | |
C. | 如果m∥α,n∥α,m、n共面,那么m∥n | |
D. | 如果m?α,n∥α,m、n共面,那么m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 實(shí)軸長為$2\sqrt{5}$,虛軸長為4,漸近線方程為$y=±\frac{{2\sqrt{5}}}{5}x$,離心率$e=\frac{{3\sqrt{5}}}{5}$ | |
B. | 實(shí)軸長為$2\sqrt{5}$,虛軸長為4,漸近線方程為$y=±\frac{{\sqrt{5}}}{5}x$,離心率$e=\frac{9}{5}$ | |
C. | 實(shí)軸長為$2\sqrt{5}$,虛軸長為4,漸近線方程為$y=±2\sqrt{5}x$,離心率$e=\frac{6}{5}$ | |
D. | 實(shí)軸長為$2\sqrt{5}$,虛軸長為8,漸近線方程為$y=±\frac{{\sqrt{5}}}{2}x$,離心率$e=\frac{6}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | $\sqrt{10}$ | C. | 4 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值6 | B. | 最小值6 | C. | 最大值-6 | D. | 最小值-6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com