分析 (Ⅰ)根據(jù)絕對值不等式的解法進(jìn)行求解即可.
(Ⅱ)由條件得$\frac{1}{2a}$+$\frac{1}{3b}$+$\frac{1}{4c}$=1,利用1的代換,結(jié)合基本不等式進(jìn)行證明求解即可.
解答 解:(Ⅰ)∵f(x+2)=m-|x|,
由且f(x+2)≥0得m-|x|≥0,即|x|≤m,
即-m≤x≤m,
∵f(x+2)≥0的解集為[-3,3]
∴m=3;
證明:(Ⅱ)∵m=3,
∴$\frac{1}{2a}$+$\frac{1}{3b}$+$\frac{1}{4c}$=$\frac{m}{3}$=1,
則2a+3b+4c=(2a+3b+4c)($\frac{1}{2a}$+$\frac{1}{3b}$+$\frac{1}{4c}$)=3+$\frac{3b}{2a}$+$\frac{2a}{3b}$+$\frac{4c}{2a}$+$\frac{2a}{4c}$+$\frac{4c}{3b}$+$\frac{3b}{4c}$≥3+2+2+2=9,
當(dāng)且僅當(dāng)$\frac{3b}{2a}$=$\frac{2a}{3b}$,$\frac{4c}{2a}$=$\frac{2a}{4c}$,$\frac{4c}{3b}$=$\frac{3b}{4c}$,即2a=3b=4c,即a=$\frac{3}{2}$,b=1,c=$\frac{3}{4}$時,取等號.
即2a+3b+4c≥9成立.
點(diǎn)評 本題主要考查絕對值不等式和基本不等式的應(yīng)用,利用1的代換以及基本不等式是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓臺是直角梯形繞其一邊旋轉(zhuǎn)而成的旋轉(zhuǎn)體 | |
B. | 棱臺的上下底面一定相似,但側(cè)棱長不一定相等 | |
C. | 頂點(diǎn)在底面的投影為底面中心的棱錐為正三棱錐 | |
D. | 圓錐是直角三角形繞其一邊旋轉(zhuǎn)而成的旋轉(zhuǎn)體 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com