【題目】已知等差數(shù)列{an}滿足:a1=2,且a1 , a2 , a5成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記Sn為數(shù)列{an}的前n項和,是否存在正整數(shù)n,使得Sn>60n+800?若存在,求n的最小值;若不存在,說明理由.
【答案】
(1)解:設數(shù)列{an}的公差為d,依題意,2,2+d,2+4d成比數(shù)列,故有(2+d)2=2(2+4d),
化簡得d2﹣4d=0,解得d=0或4,
當d=0時,an=2,
當d=4時,an=2+(n﹣1)4=4n﹣2.
(2)解:當an=2時,Sn=2n,顯然2n<60n+800,
此時不存在正整數(shù)n,使得Sn>60n+800成立,
當an=4n﹣2時,Sn= =2n2,
令2n2>60n+800,即n2﹣30n﹣400>0,
解得n>40,或n<﹣10(舍去),
此時存在正整數(shù)n,使得Sn>60n+800成立,n的最小值為41,
綜上,當an=2時,不存在滿足題意的正整數(shù)n,
當an=4n﹣2時,存在滿足題意的正整數(shù)n,最小值為41
【解析】(1)設出數(shù)列的公差,利用等比中項的性質建立等式求得d,則數(shù)列的通項公式可得.(2)利用(1)中數(shù)列的通項公式,表示出Sn根據(jù)Sn>60n+800,解不等式根據(jù)不等式的解集來判斷.
【考點精析】掌握數(shù)列的前n項和和等差數(shù)列的性質是解答本題的根本,需要知道數(shù)列{an}的前n項和sn與通項an的關系;在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】已知首項是1的兩個數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求數(shù)列{cn}的通項公式;
(2)若bn=3n﹣1 , 求數(shù)列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,O為坐標原點,橢圓C1: + =1(a>b>0)的左、右焦點分別為F1 , F2 , 離心率為e1;雙曲線C2: ﹣ =1的左、右焦點分別為F3 , F4 , 離心率為e2 , 已知e1e2= ,且|F2F4|= ﹣1.
(1)求C1、C2的方程;
(2)過F1作C1的不垂直于y軸的弦AB,M為AB的中點,當直線OM與C2交于P,Q兩點時,求四邊形APBQ面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,在處的切線方程為.
(1)求, ;
(2)若,證明: .
【答案】(1), ;(2)見解析
【解析】試題分析:(1)求出函數(shù)的導數(shù),得到關于 的方程組,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用導數(shù)研究其單調性可得
,
從而證明.
試題解析:((1)由題意,所以,
又,所以,
若,則,與矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
當時, , 單調遞減,且;
當時, , 單調遞增;且,
所以在上當單調遞減,在上單調遞增,且,
故,
故.
【點睛】本題考查利用函數(shù)的切線求參數(shù)的方法,以及利用導數(shù)證明不等式的方法,解題時要認真審題,注意導數(shù)性質的合理運用.
【題型】解答題
【結束】
22
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(, 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;
(1)求曲線的極坐標方程;
(2)在曲線上取兩點, 與原點構成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的函數(shù),如果存在常數(shù),對區(qū)間的任意劃分:,和式恒成立,則稱為上的“絕對差有界函數(shù)”,注:.
(1)求證:函數(shù)在上是“絕對差有界函數(shù)”;
(2)記集合存在常數(shù),對任意的,有成立.
求證:集合中的任意函數(shù)為“絕對差有界函數(shù)”;
(3)求證:函數(shù)不是上的“絕對差有界函數(shù)”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應段的概率,假設各年的年入流量相互獨立.
(1)求未來4年中,至多有1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量X限制,并有如下關系:
年入流量X | 40<X<80 | 80≤X≤120 | X>120 |
發(fā)電機最多可運行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機運行,則該臺年利潤為5000萬元,若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點p(1,m)在拋物線上,F為焦點,且.
(1)求拋物線C的方程;
(2)過點T(4,0)的直線交拋物線C于A,B兩點,O為坐標原點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是
A. 先把高三年級的2000名學生編號:1到2000,再從編號為1到50的50名學生中隨機抽取1名學生,其編號為,然后抽取編號為的學生,這樣的抽樣方法是分層抽樣法
B. 線性回歸直線不一定過樣本中心點
C. 若兩個隨機變量的線性相關性越強,則相關系數(shù)的值越接近于1
D. 若一組數(shù)據(jù)1、、3的平均數(shù)是2,則該組數(shù)據(jù)的方差是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com