2.已知a,b,c分別是△ABC的內角A,B,C所對的邊,a=2bcosB,b≠c.
(1)證明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.

分析 (1)由正弦定理和正弦函數(shù)的性質,即可證明A=2B成立;
(2)由余弦定理和正弦、余弦函數(shù)的性質,化簡求值即可.

解答 解:(1)證明:△ABC中,a=2bcosB,
由$\frac{a}{sinA}=\frac{sinB}$,得sinA=2sinBcosB=sin2B,
∵0<A,B<π,
∴sinA=sin2B>0,
∴0<2B<π,
∴A=2B或A+2B=π,
若A+2B=π,則B=C,b=c這與“b≠c”矛盾,
∴A+2B≠π;
∴A=2B;
(2)∵a2+c2=b2+2acsinC,
∴$\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=sinC$,
由余弦定理得cosB=sinC,
∵0<B,C<π,
∴$C=\frac{π}{2}-B$或$C=\frac{π}{2}+B$,
①當$C=\frac{π}{2}-B$時,則$A=\frac{π}{2},B=C=\frac{π}{4}$,
這與“b≠c”矛盾,∴$A≠\frac{π}{2}$;
②當$C=\frac{π}{2}+B$時,由(1)得A=2B,
∴$A+B+C=A+2B+\frac{π}{2}=2A+\frac{π}{2}=π$,
∴$A=\frac{π}{4}$.

點評 本題考查了正弦、余弦定理和正弦、余弦函數(shù)的應用問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}前n項和為Sn,a1=-2,且滿足Sn=$\frac{1}{2}$an+1+n+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=log3(-an+1),求數(shù)列{$\frac{1}{{_{n}b}_{n+2}}$}前n項和為Tn,求證Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知數(shù)列{an}的前n項和為Sn,且Sn=n-5an+23,n∈N*,則數(shù)列{an}的通項公式an=(  )
A.$3×{(\frac{5}{6})^{n-1}}-1$B.$3×{(\frac{5}{6})^n}-1$C.$3×{(\frac{5}{6})^{n-1}}+1$D.$3×{(\frac{5}{6})^n}+1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在平面直角坐標系xOy中,過點M(0,1)的橢圓 Γ:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$
(1)求橢圓 Γ的方程;
(2)已知直線l不過點M,與橢圓 Γ相交于P,Q兩點,若△MPQ的外接圓是以PQ為直徑,求證:直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$\frac{7π}{3}$B.$8+\frac{π}{3}$C.$({4+\sqrt{2}})π$D.$({5+\sqrt{2}})π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在平行四邊形ABCD中,AC與BD交于點O,E是線段OD的中點,AE的延長線與CD相交于點F.若AB=2,$AD=\sqrt{2}$,∠BAD=45°,則$\overrightarrow{AF}•\overrightarrow{BE}$=( 。
A.$\frac{1}{2}$B.1C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設${b_n}=\frac{n}{a_n}$,Sn是數(shù)列{bn}的前n項和,不等式${S_n}+\frac{n}{{{2^{n+1}}}}>{(-1)^n}•a$對任意正整數(shù)n恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在等比數(shù)列{an}中,已知${a_2}=\frac{1}{2}\;,\;\;{a_5}=4$,則此數(shù)列的公式比為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某農戶計劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設種植黃瓜和韭菜的產量,成本和售價如下表:
 年產量/畝年種植成本/畝 每噸售價 
 黃瓜 4噸 1.2萬元 0.55萬元
 韭菜6噸  0.9萬元 0.3萬元
分別用x,y表示黃瓜和韭菜的種植面積(單位:畝)
(Ⅰ)用x,y列出滿足條件的數(shù)學關系式,并畫出相應的平面區(qū)域;
(Ⅱ)問分別種植黃瓜和韭菜各對少畝能夠使一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大?并求出此最大利潤.

查看答案和解析>>

同步練習冊答案