14.已知△ABC的外接圓半徑為1,圓心為點(diǎn)O,且$3\overrightarrow{OA}+4\overrightarrow{OB}+5\overrightarrow{OC}=0$,則$\overrightarrow{OC}•\overrightarrow{AB}$的值為( 。
A.$\frac{8}{5}$B.$\frac{7}{5}$C.$-\frac{1}{5}$D.$\frac{4}{5}$

分析 先將一個(gè)向量用其余兩個(gè)向量表示出來,然后借助于平方使其出現(xiàn)向量模的平方,則才好用上外接圓半徑,然后進(jìn)一步分析結(jié)論,運(yùn)用向量的加減運(yùn)算和數(shù)量積的性質(zhì),容易化簡(jiǎn)出要求的結(jié)果.

解答 解:因?yàn)?$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,
所以3$\overrightarrow{OA}$+4$\overrightarrow{OB}$=-5$\overrightarrow{OC}$,
所以9$\overrightarrow{OA}$2+24$\overrightarrow{OA}$•$\overrightarrow{OB}$+16$\overrightarrow{OB}$2=25$\overrightarrow{OC}$2
因?yàn)锳,B,C在圓上,所以|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1.
代入原式得$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
所以$\overrightarrow{OC}$•$\overrightarrow{AB}$=-$\frac{1}{5}$(3$\overrightarrow{OA}$+4$\overrightarrow{OB}$)•($\overrightarrow{OB}$-$\overrightarrow{OA}$)
=-$\frac{1}{5}$(-3$\overrightarrow{OA}$2+4$\overrightarrow{OB}$2-$\overrightarrow{OA}$•$\overrightarrow{OB}$)=-$\frac{1}{5}$×(-3+4-0)
=-$\frac{1}{5}$.
故選:C.

點(diǎn)評(píng) 本題考查了平面向量在幾何問題中的應(yīng)用.要利用向量的運(yùn)算結(jié)合基底意識(shí),將結(jié)論進(jìn)行化歸,從而將問題轉(zhuǎn)化為基底間的數(shù)量積及其它運(yùn)算問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)數(shù)列{an}是公比為q的等比數(shù)列,且|q|>1.若數(shù)列{an}的連續(xù)四項(xiàng)構(gòu)成集合{-72,-32,48,108},則2q的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a=2ln3,b=2lg2,c=($\frac{1}{4}$)${\;}^{lo{g}_{\frac{1}{3}}\frac{1}{2}}$,則(  )
A.c>a>bB.a>b>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.分別利用逆矩陣和行列式的知識(shí)解方程MX=N中的X=($\begin{array}{l}x\\ y\end{array}$),其中M=[$\begin{array}{l}{5}&{2}\\{4}&{1}\end{array}$],N=[$\begin{array}{l}{5}\\{8}\end{array}$]
(不按題目要求做不給分)
方法一:(逆矩陣法)
方法二:(行列式法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=xm-$\frac{4}{x}$,且f(4)=3.
(1)求m的值;   
(2)求f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知兩直線l1:(a+1)x-2y+1=0,l2:x+ay-2=0.當(dāng)a=1時(shí),l1⊥l2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-1≤0}\\{x-y+1≥0}\\{x≥0,y≥0}\end{array}\right.$,則z=2x+3y點(diǎn)的最大值是13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)全集U=R,集合A={y|y=x2+1},B={x|x≤-1或x≥3},則A∩(∁UB)=( 。
A.{x|x≤-1}B.{x|x≤1}C.{x|-1<x≤1}D.{x|1≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率是$\frac{{\sqrt{2}}}{2}$,上頂點(diǎn)B是拋物線x2=4y的焦點(diǎn).
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)若P、Q是橢圓M上的兩個(gè)動(dòng)點(diǎn),且OP⊥OQ(O是坐標(biāo)原點(diǎn)),試問:點(diǎn)到直線的距離是否為定值?若是,試求出這個(gè)定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案